首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Internuclear distances obtained from nuclear Overhauser effects were used in combination with a distance geometry algorithm to determine the conformation of Mg(alpha,beta-methylene)ATP bound to the Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) both in the absence and presence of cognate and noncognate amino acids. Mg(alpha,beta-methylene)ATP, a nonhydrolyzable analog of ATP, was used to prevent hydrolysis of the nucleotide in the presence of either cognate or noncognate amino acids. Kinetic analysis showed that Mg(alpha,beta-methylene)ATP was a linear competitive inhibitor with respect to ATP in the ATP-pyrophosphate exchange reaction with a Ki = 1.2 mM. The pattern of internuclear Overhauser effects on Mg(alpha,beta-methylene)ATP bound to delta MTS was qualitatively consistent only with an anti glycosidic torsional angle, suggesting that the adenosine portion of the nucleotide is uniquely oriented in the binary enzyme-nucleotide complex. Nearly identical patterns of nuclear Overhauser effects were also observed in ternary complexes containing either cognate L-methionine or noncognate L-homocysteine amino acids. Distance geometry calculations permitted the range and conformational space of the allowed adenine-ribose glycosidic torsional angles in each of the complexes to be better defined and compared. Average adenine-ribose glycosidic torsional angles for enzyme-bound Mg(alpha,beta-methylene)ATP of -106 +/- 9 degrees, -99 +/- 11 degrees, and -97 +/- 11 degrees were determined for the delta MTS.Mg(alpha,beta-methylene)ATP, delta MTS.Mg(alpha,beta-methylene)ATP.L-methionine, and delta MTS.Mg(alpha,beta-methylene)ATP.L-homocysteine complexes, respectively. Comparison of the three enzyme-bound conformations showed that a single nucleotide structure having an adenine-ribose glycosidic torsional angle of -98 degrees with a 3'-endo to O4'-exo ribose sugar pucker was, within error, consistent with the experimental internuclear distances obtained in all three complexes. The nearly identical anti glycosidic torsional angles observed in all three complexes demonstrates that the conformation of the adenosine moiety of the enzyme-bound nucleotide is not sensitive to the presence or the nature of the amino acid bound at the aminoacyladenylate site. Therefore, conformational changes known to occur in the methionyl-tRNA synthetase upon ligand binding appear not to alter the bound conformation of the nucleotide. Information on the conformation and arrangement of substrates bound at the aminoacyladenylate site of delta MTS is necessary for understanding the molecular mechanisms involved in amino acid activation and discrimination.  相似文献   

2.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

3.
Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases have been purified from an extreme thermophile, Thermus thermophilus HB8. Valyl-tRNA and isoleucyl-tRNA synthetases are found to be monomer proteins (Mr 108000 and 129000, respectively), while methionyl-tRNA synthetase is a dimer protein (Mr 150000). These enzymes are very similar with respect to amino acid compositions and alpha-helix contents as estimated by circular dichroism analyses. Furthermore, two Zn2+ are tightly bound to each of these synthetases. These data suggest that valyl-tRNA and isoleucyl-tRNA synthetases consist of two domains, each corresponding to the subunit of methionyl-tRNA synthetase.  相似文献   

4.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

5.
The ileS gene encoding the isoleucyl-tRNA synthetase of the thermophilic archaebacterium Methanobacterium thermoautotrophicum Marburg was isolated and sequenced. ileS was closely flanked by an unknown open reading frame and by purL and thus is arranged differently from the organizations observed in several eubacteria or in Saccharomyces cerevisiae. The deduced amino acid sequence of isoleucyl-tRNA synthetase was compared with primary sequences of isoleucyl-, valyl-, leucyl-, and methionyl-tRNA synthetases from eubacteria and yeast. The archaebacterial enzyme fitted well into this group of enzymes. It contained the two short consensus sequences observed in class I aminoacyl-tRNA synthetases as well as regions of homology with enzymes of the isoleucine family. Comparison between the isoleucyl-tRNA synthetases of M. thermoautotrophicum yielded 36% amino acid identity with the yeast enzyme and 32% identity with the corresponding enzyme from Escherichia coli. The ileS gene of the pseudomonic acid-resistant M. thermoautotrophicum mutant MBT10 was also sequenced. The mutant enzyme had undergone a glycine to aspartic acid transition at position 590, in a conserved region comprising the KMSKS consensus sequence. The inhibition constants of pseudomonic acid, KiIle and KiATP, for the mutant enzyme were 10-fold higher than those determined for the wild-type enzyme. Both the mutant and the wild-type ileS gene were expressed in E. coli, and their products displayed the expected difference in sensitivity toward pseudomonic acid.  相似文献   

6.
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.  相似文献   

7.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

8.
M Lazard  M Mirande  J P Waller 《Biochemistry》1985,24(19):5099-5106
Native isoleucyl-tRNA synthetase and a structurally modified form of methionyl-tRNA synthetase were purified to homogeneity following trypsinolysis of the high molecular weight complex from sheep liver containing eight aminoacyl-tRNA synthetases. The correspondence between purified isoleucyl-tRNA synthetase and the previously unassigned polypeptide component of Mr 139 000 was established. It is shown that dissociation of this enzyme from the complex has no discernible effect on its kinetic parameters. Both isoleucyl- and methionyl-tRNA synthetases contain one zinc ion per polypeptide chain. In both cases, removal of the metal ion by chelating agents leads to an inactive apoenzyme. As the trypsin-modified methionyl-tRNA synthetase has lost the ability to associate with other components of the complex [Mirande, M., Kellermann, O., & Waller, J. P. (1982) J. Biol. Chem. 257, 11049-11055], the zinc ion is unlikely to be involved in complex formation. While native purified isoleucyl-tRNA synthetase displays hydrophobic properties, trypsin-modified methionyl-tRNA synthetase does not. It is suggested that the assembly of the amino-acyl-tRNA synthetase complex is mediated by hydrophobic domains present in these enzymes.  相似文献   

9.
Transferred nuclear Overhauser effect measurements (in the two-dimensional mode) have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C.M. (1982) Biochemistry 21, 6979. Gantzer, M.L., et al. (1982) Biochemistry 21, 4083]. Nine unique proton-proton distances on ATPase-bound Co(NH3)4ATP were determined from the initial build-up rates of the cross-peaks of the 2D-TRNOE data sets. These distances, taken together with previous 31P and 1H relaxation measurements with paramagnetic probes, are consistent with a single nucleotide conformation at the active site. The bound Co(NH3)4ATP) adopts an anti conformation, with a glycosidic torsion angle of 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. Mn2+ bound to a single, high-affinity site on the ATPase lies above and in the plane of the adenine ring. The distances from enzyme-bound Mn2+ to N6 and N7 are too large for first coordination sphere complexes, but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

11.
As aminoacyl adenylate surrogates, a series of methionyl and isoleucyl phenolic analogues containing bioisosteric linkers mimicking ribose have been investigated. Inhibition of synthesized compounds to the aminoacylation reaction by the corresponding Escherichia coli methionyl-tRNA and isoleucyl-tRNA synthetases indicated that 18 was found to be a potent inhibitor of isoleucyl-tRNA synthetase. A molecular modeling study demonstrated that in 18, isovanillate and hydroxamate served as proper surrogates for adenine and ribose in isoleucyl adenylate, respectively.  相似文献   

12.
Summary Aminoacyl-tRNA synthetases are capable of converting 5-ATP into 5,5-diadenosine tetraphosphate. The reaction reflects the reversal of enzyme-bound aminoacyl-adenylate by ATP instead of PPi.In the case of a few prokaryotic as well as eukaryotic aminoacyl-tRNA synthetases, the initial rate of diadenosine tetraphosphate synthesis can be greatly enhanced upon adding small amounts of zinc. This observation enables us to establish a relationship between diadenosine tetraphosphate, a nucleotide possibly involved in controlling cell proliferation, and a metallic cofactor, which is believed to play a role in tumour growth.Abbreviations AlaRS alanyl-tRNA synthetase (EC 6.1.7) - CysRS cysteinyl-tRNA synthetase (EC 6.1.16) - HisRS histidyl-tRNA synthetase (EC 6.1.21) - HeRS isoleucyl-tRNA synthetase (EC 6.1.5) - LysRS lysyl-tRNA synthetase (EC 6.1.6) - MetRS methionyl-tRNA synthetase (EC 6.1.10) - PheRS phenylalanyl-tRNA synthetase (EC 6.1.20) - ProRS prolyl-tRNA synthetase (EC 6.1.15) - TrpRS Tryptophanyl-tRNA synthetase (EC 6.1.2) - TyrRS tyrosyl-tRNA synthetase (EC 6.1.1) - EDTA ethylene diamine tetraacetic acid  相似文献   

13.
The reaction of isoleucyl-tRNA synthetase from Escherichia coli B was analysed by deriving total steady-state rate equations for the ATP/PPi exchange reaction and for the aminoacylation of tRNA, and by fitting these rate equations to series of experimental results. The analysis suggests that (a) a Mg2+ inhibits the aminoacylation of tRNA but not the activation of the amino acid. In the chosen mechanism, this enzyme-bound Mg2+ is required at the activation step. (b) Another Mg2+ is required at ATP, but the MgATP apparently can be replaced by the spermidine.ATP complex. Spermidine.ATP is a weaker substrate. The role of spermidine.ATP is especially suggested by the relative rates of the aminoacylation of tRNA when the spermidine and magnesium concentrations are varied. The aminoacylation measurements still suggest that (c) two (or more) Mg2+ are bound to the tRNA molecule and are required for enzyme activity at the transfer step, and that these Mg2+ can be replaced by spermidines.  相似文献   

14.
Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (chi = 78 +/- 10 degrees) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH3)4ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides [chi = 78 +/- 10 degrees, O1'-endo; Rosevear, P.R., Bramson, H.N., O'Brian, C., Kaiser, E.T., & Mildvan, A.S. (1983) Biochemistry 22, 3439]. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.  相似文献   

15.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

16.
F Cramer  U Englisch  W Freist  H Sternbach 《Biochimie》1991,73(7-8):1027-1035
Isoleucyl-tRNA synthetases isolated from commercial baker's yeast and E coli were investigated for their sequences of substrate additions and product releases. The results show that aminoacylation of tRNA is catalyzed by these enzymes in different pathways, eg isoleucyl-tRNA synthetase from yeast can act with four different catalytic cycles. Amino acid specificities are gained by a four-step recognition process consisting of two initial binding and two proofreading steps. Isoleucyl-tRNA synthetase from yeast rejects noncognate amino acids with discrimination factors of D = 300-38000, isoleucyl-tRNA synthetase from E coli with factors of D = 600-68000. Differences in Gibbs free energies of binding between cognate and noncognate amino acids are related to different hydrophobic interaction energies and assumed conformational changes of the enzyme. A simple hypothetical model of the isoleucine binding site is postulated. Comparison of gene sequences of isoleucyl-tRNA synthetase from yeast and E coli exhibits only 27% homology. Both genes show the 'HIGH'- and 'KMSKS'-regions assigned to binding of ATP and tRNA. Deletion of 250 carboxyterminal amino acids from the yeast enzyme results in a fragment which is still active in the pyrophosphate exchange reaction but does not catalyze the aminoacylation reaction. The enzyme is unable to catalyze the latter reaction if more than 10 carboxyterminal residues are deleted.  相似文献   

17.
E. coli tryptophanyl-tRNA synthetase can form a complex with Blue-dextran Sepharose, in the presence or in the absence of Mg++. In its absence, the complex is dissociated by either ATP or cognate tRNATrp. However, in the presence of Mg++, only tRNATrp can dissociate the complex whereas ATP has no effect. E. coli total tRNA or tRNAMet, at the same concentration, cannot displace the synthetase from the complex. It is suggested that the Blue-dextran binds to the synthetase through its tRNA binding domain. This hypothesis is supported by previous findings with polynucleotide phosphorylase showing that Blue-dextran Sepharose can be used in affinity chromatography to recognize a polynucleotide binding site of the protein. The selective elution by its cognate tRNA of Trp-tRNA synthetase bound to Blue-dextran Sepharose provides a rapid and efficient purification of the enzyme. Examples of other synthetases and nucleotidyl transferases are also discussed.  相似文献   

18.
Prokaryotes have a single form of adenylosuccinate synthetase that controls the committed step of AMP biosynthesis, but vertebrates have two isozymes of the synthetase. The basic isozyme, which predominates in muscle, participates in the purine nucleotide cycle, has an active site conformation different from that of the Escherichia coli enzyme, and exhibits significant differences in ligand recognition. Crystalline complexes presented here of the recombinant basic isozyme from mouse show the following. GTP alone binds to the active site without inducing a conformational change. IMP in combination with an acetate anion induces major conformational changes and organizes the active site for catalysis. IMP, in the absence of GTP, binds to the GTP pocket of the synthetase. The combination of GTP and IMP results in the formation of a stable complex of 6-phosphoryl-IMP and GDP in the presence or absence of hadacidin. The response of the basic isozyme to GTP alone differs from that of synthetases from plants, and yet the conformation of the mouse basic and E. coli synthetases in their complexes with GDP, 6-phosphoryl-IMP, and hadacidin are nearly identical. Hence, reported differences in ligand recognition among synthetases probably arise from conformational variations observed in partially ligated enzymes.  相似文献   

19.
Aminoglycoside nucleotidyltransferase (2')-Ia [ANT (2')-Ia] was cloned from Pseudomonas aeruginosa and purified from overexpressing Escherichia coli BL21(DE3) cells. The first enzyme-bound conformation of an aminoglycoside antibiotic in the active site of an aminoglycoside nucleotidyltransferase was determined using the purified aminoglycoside nucleotidyltransferase (2' ')-Ia. The conformation of the aminoglycoside antibiotic isepamicin, a psuedo-trisaccharide, bound to aminoglycoside nucleotidyltransferase (2' ')-Ia has been determined using NMR spectroscopy. Molecular modeling, employing experimentally determined interproton distances, resulted in two different enzyme-bound conformations (conformer 1 and conformer 2) of isepamicin. Conformer 1 was by far the major conformer defined by the following average glycosidic dihedral angles: PhiBC = -65.26 +/- 1.63 degrees and PsiBC = -54.76 +/- 4.64 degrees. Conformer 1 was further subdivided into one major (conformer 1a) and two minor components (conformers 1b and 1c) based on the comparison of glycosidic dihedral angles PhiAB and PsiAB. The arrangement of substrates in the enzyme.metal-ATP.isepamicin complex was determined on the basis of the measured effect of the paramagnetic substrate analogue Cr(H2O)4ATP on the relaxation rates of substrate protons which were used to determine relative distances of isepamicin protons to the Cr3+. Both conformers of isepamicin yielded arrangements that satisfied the NOE restraints and the observed paramagnetic effects of Cr(H2O)4ATP. It has been suggested that aminoglycosides use both electrostatic interactions and hydrogen bonds in binding to RNA and that the contacts made by the A and B rings to RNA are the most important for binding [Fourmy, D., Recht, M. I., Blanchard, S. C., and Puglisi, J. D. (1996) Science 274, 1367-1371]. Comparisons based on the determined conformations of enzyme-bound aminoglycoside antibiotics also suggested that interactions of rings A and B with enzymes may be the major determinant in aminoglycoside binding to enzymes [Serpersu, E. H., Cox, J. R., DiGiammarino, E. L., Mohler, M. L., Ekman, D. R., Akal-Strader, A., and Owston, M. (2000) Cell Biochem. Biophys. (in press)]. The conformation of isepamicin bound to the aminoglycoside nucleotidyltransferase (2' ')-Ia, determined in this work, lent further support to this theory. Furthermore, comparison of enzyme-bound conformations of isepamicin to the RNA-bound conformation of gentamycin C1a also showed remarkable similarities between the enzyme-bound and RNA-bound aminoglycoside antibiotic conformations. These studies should aid in the design of effective inhibitors possessing a broad range of aminoglycoside-modifying enzymes as targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号