首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Induction of multiple shoots in cotton (Gossypium hirsutum L. cv. Anjali-LRK 516) has been achieved with cotyledonary nodes devoid of cotyledons and apical meristems. Explants from 35-day-old seedlings yielded the maximum number of shoots (4.7 shoots/explant) using Murashige and Skoog (MS) basal medium supplemented with 6-benzylaminopurine and kinetin (2.5 mg/1 each). Explants from 35-day-old seedlings raised in glass bottles produced a higher number of multiple shoots (8.3 shoots/explant) than those grown in glass tubes and cultured on the same shoot induction medium. Elongation of multiple shoots was obtained on liquid or agar MS basal medium without phytohormones. In vitro shoots were rooted on half-strength agar-solidified MS basal medium or with 0.05 or 0.1 mg/1 naphthaleneacetic acid. Hardening and survival of tissue culture plantlets was 95% under greenhouse conditions.Abbreviations BAP 6-Benzylaminopurine - GA3 Gibberellic acid - MS Murashige and Skoog medium - NAA -Napthaleneacetic acid  相似文献   

2.
Calli of cotton (Gossypium hirsutum L.) initiated from seedling hypocotyl tissue were placed in liquid suspension and maintained by serial subculture in hormone-free Murashige and Skoog (MS) medium. Suspensions were sieved and globular embryos collected, washed, resuspended in basal medium and plated onto various semi-solid media. High inorganic salts (MS), low salt (2/3 MS), excess KNO3, and the growth regulators napthaleneacetic acid (NAA), gibberellic acid (GA3) and kinetin were tested for their effects on somatic embryo maturation. Long-term embryo proliferation and maturation were best on medium containing MS plus 1.9g/l KNO3. Embryos 3 mm to 10 mm in size were removed from this plating medium and placed on sterile vermiculite saturated with Stewart and Hsu's medium plus 0.1 mg/l indoleacetic acid (IAA). Plants were recovered from 10.6% of the embryos. When 5 mm embryos were placed on this medium, 30% of the embryos formed plants within six weeks. Smaller embryos required a longer period of development on the vermiculite and the addition of fresh medium supplemented with 0.1 mg/l GA3. Plants with an extensive root system and two true leaves were removed from sterile culture and potted in either one-to-one peat and sand, or vermiculite. Eighty percent of the regenerants were successfully hardened when glass beakers of increasing size (10 to 150 ml) were sequentially placed over the young plants during a two-week period.  相似文献   

3.
Improvement in somatic embryogenesis has been achieved in several cotton lines (Gossypium hirsutumL.) from the Georgia and Pee Dee germplasm with culture media containing various Putrescine concentrations. The best results were obtained with the -naphthalene acetic acid (NAA)-based treatments, S15 g.05 NAA and EMMS2, as compared to the 2,4-dichlorophenoxyacetic acid (2,4-D)-based culture medium, EMMS4. Inclusion of 0.5 mg l–1 Putrescine improved somatic embryo (SE) induction for most treatments and lines tested. An 8-and 2-fold improvement was achieved in SE production on the EMMS2-0.5 Putrescine treatment as compared to EMMS2 alone for cotton lines PD 97019 and GA 98033, respectively. A significant increase in SE number (53-fold) was obtained with the addition of 0.5 mg l–1Putrescine to EMMS2 for PD 97021, which was essentially recalcitrant without Putrescine treatment. Conversion of SEs into plants was both genotype- and culture medium-dependent.  相似文献   

4.
Plant regeneration via somatic embryogenesis in cotton   总被引:6,自引:0,他引:6  
An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and stem explants of abnormal seedling as an explant have been developed in Gossypium hirsutum L. Embryogenic callus and somatic embryos have been obtained directly from the explants of cotton abnormal seedlings. Plant growth regulators influenced the induction of cotton somatic embryogenesis. The optimal medium for direct somatic embryogenesis was modified MS medium supplemented with 0.1 mg l-1 ZT and 2 g l-1 activated carbon. On this medium, an average of 28.0 and 28.1 matured somatic embryos formed from per leaf and stem explants respectively. The highest frequency of somatic embryogenesis was 100%. The somatic embryos were converted into normal plantlets when cultured on modified MS medium supplemented with 0.1 mg l-1 ZT. Upon transfer to soil, plants grew well and appeared normal. Plants could be regenerated within 60–80 days. The system of cotton somatic embryogenesis and plant regeneration described here will facilitate the application of plant tissue culture and genetic engineering on cotton genetic improvement. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
This experiment was conducted to study the relationship between the increase in cellulose content in developing cotton bolls and their final cotton fibre strength. The rate of cellulose increase over time was estimated using logistical regression, and the logistic equation parameters were then used to compare different cotton cultivars in different temperature environments. The increase in cellulose content followed a typical “S” curve, with the boll period time divided into slow-fast-slow stages. In different cultivars, the final fibre strength was closely related to the characters of the fast cellulose content increasing stage, negatively related to the maximal cellulose increasing rate (P < 0.05), and positively related to the duration of the fast cellulose content increasing stage (< 0.01). In the same cultivar, low temperature reduced the maximal cellulose increasing rate and prolonged the duration of the fast cellulose increasing stage. The results indicate that, in diverse genetic background, long-lasting and tempered cellulose growth during the rapid cellulose increasing stage is of significant benefit to high strength fibre development. For closely related cotton cultivars, decreasing the maximal cellulose increasing rate and the termination of rapid cellulose increasing stage reduced fibre strength that often occurs when temperatures are low.  相似文献   

6.
7.
The effects of genotype, pollen or growth regulator-pretreatment of pistils, developmental stage of the ovule (embryo sac) and culture media on induction of gynogenesis, and subsequent plantlet regeneration in vitro were assessed in interspecific Gossypium barbadense × G. hirsutum cotton hybrids. Gynogenesis occurred in all genotypes used when the pistils had been pre-treated with pollen from Hibiscus cannabinus and ovaries were harvested 5 or 10 days after anthesis. The use of culture media, SH and MS, showed no significant differences in responding ovules, embryogenic ovules or embryo germination frequency. Recovered progeny were characterized cytogenetically and microscopically to help documenting their reproductive basis. Root tip chromosome counts of 17 plants established from ovule culture revealed that chromosome numbers ranged from 27 to 44. Although the reproductive mechanisms need to be characterized more extensively by cytological and molecular means, the observations suggest that gynogenesis in cotton involves some unusual reproductive events. Aneuploids could be useful for functional genomic characterization of genome shock, deletion mapping, and germplasm introgression.  相似文献   

8.
Summary 2,4-Dichlorophenoxyacetic acid (2,4-D) resistant plants of transgenic cotton (Gossypium hirsutum L.) were produced using Agrobacterium tumefaciens containing a plasmid carrying the neomycin phosphotransferase II (npt II) and 2,4-D monooxygenase (tfd A) genes. An in vitro assay was performed to determine the sensitivity of seed germination, and the growth of seedlings of transgenic and non-transgenic cotton to various concentrations of kanamycin and 2,4-D. The results indicated that kanamycin caused the cotyledons of non-transgenic plants to turn white, but transgenic plants grew normally. Seed germination and seedling growth of non-transgenic plants were strongly inhibited by 2,4-D, but only slightly for transgenic plants. Transgenic plants and non-transgenic plants can be clearly distinguished by the use of 2 mg l−1 2,4-D in seed germination medium. There was a high correlation between the response of seed germination and the growth of seedlings to kanamycin or 2,4-D, based on the germination ration, albino ratio, dry weight or fresh weight. On this basis, we development a rapid method for identifying transgenic plants that has been verified in the field. These findings will allow identification of cotton transformants at an early stage of plant development, saving time and improving cultivars containing the 2,4-D resistance trait.  相似文献   

9.
In animals, the small GTP-binding proteins, Rac and Rho, of theras superfamily participate in the signal rransduction pathway that regulates the organization of the actin cytoskeleton. We report here on the characterization of two distinct cDNA clones isolated from a cotton fiber cDNA library that code for homologs of animal Rac proteins. Using gene-specific probes, we have determined that amphidiploid cotton contains two genes that code for each of the two Rac proteins, designated Rac13 and Rac9, respectively. The gene for Rac13 shows highly enhanced expression in developing cotton fibers, with maximal expression occurring at the time of transition between primary and secondary wall synthesis. This is also the time at which reorganization of the cytoskeleton occurs, and thus the pattern of expression of Rac13 is consistent with its possible role, analogous to animal Rac, in the signal transduction pathway that controls cytoskeletal organization.  相似文献   

10.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

11.
Brassinolide (BR), which is the most biologically active brassinosteroid, was used to examine the potential effect of hormone on cotton somatic embryogenesis. Ten-day-old cotton (Gossypium hirsutum L., cv. Cooker) seedlings were used for explant source and hypocotyls were removed and cultured on MS basal medium with B5 vitamins supplemented with 1 mg/L 6-benzylaminopurine + 0.5 mg/L kinetin for callus induction. After one month proliferating calli pieces were collected and cultured on MS basal medium containing various concentrations of BR (0.1, 0.5, 1.0 μM) with their controls. BR treatments were negatively effective on the fresh weight of calli when compared to control. Differential somatic embryogenesis maturation rates due to BR treatment were observed. Somatic embryogenesis was stimulated especially for transition to cotyledonary phase at 0.5 mg/L BR. Histological preparations from embryogenic calli and somatic embryos at different stages of development revealed the spontaneous polyploidisation during early somatic embryogenesis on BR-treated calli. Present results suggest that BR negatively effected calli growth, however, had a stimulating role in maturation of somatic embryos.  相似文献   

12.
Surface-irrigated cotton (Gossypium hirsutum L.) grown on slowly draining clay soil is subjected to short-term periods of waterlogging at each irrigation which generally results in reduced productivity. The sequence of above- and below-ground plant responses to transient waterlogging and the role of N availability in modifying the immediate responses were studied. Lysimeters of Marah clay loam (a Natrustalf) were instrumented to monitor soil and plant responses to a 7-day waterlogging event beginning 67 days after sowing. Cotton (‘Deltapine 61’) plants (8 per lysimeter) were grown with two levels of added N (300 kg ha−1 and 30 kg ha−1) and two irrigation treatments (flooded and control). Measured soil-O2 levels decreased rapidly upon surface flooding because water displaced air and root zone respiration consumed O2. The rate of O2 consumption was 2.7 times greater in the high-N treatment than the low-N treatment. This difference was associated with a 1.8 fold difference in numbers of observed roots. Root growth was only slightly affected by flooding. Leaf growth decreased by 28%, foliage temperature increased 2.3% and apparent photosynthesis decreased by 16%. It is suggested that flooding reduced photosynthetic activity within 2 days while other stress symptoms became apparent after about 6 days. Although this stress was reflected in a trend for decreased plant productivity, the effect of flooding on boll dry mass at harvest was not significant at the level of replication used. The single waterlogging did not cause yield reductions comparable to those observed elsewhere when several waterlogging events were imposed. Contribution from the CSIRO, Centre for Irrigation Research, Griffith, NSW, Australia and USDA-ARS, Morris, MI, USA, in cooperation with the univ. of Minnesota.  相似文献   

13.
Tissue culture methods for improvement of cotton has lagged seriously compared to other major crops. A method for regeneration of cotton which includes a morphogenetically competent cell suspension was needed to facilitate selection of stress-resistant variants and gene manipulation. Preliminary screening of eight strains of Gossypium hirsutum L. for embryogenic potential resulted in the production of somatic embryos in all strains. Coker 312 was selected for use in the development of a model regeneration system for G. hirsutum. Calli were initiated from hypocotyl tissues of 3-day-old-seedlings. Globular embryos were present after six weeks in culture. Calli were subcultured to liquid suspension in growth regulator-free medium. After three to four weeks, suspensions were sieved to collect globular and heart stage embryos. Collected embryos developed further when plated onto semi-solid medium. To induce germination and plantlet growth, mature embryos were placed on sterile vermiculite saturated with medium. Upon development of roots and two true leaves, plantlets were potted in peat and sand, and hardened. Mature plants and progeny have been obtained with this procedure. A high percentage of infertile plants was observed among the regenerants.Abbreviations NAA 1 naphthaleneacetic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - MS Murashige and Skoog - BA 6 benzylamino purine - 2i P N6-(2-isopentenyladenine  相似文献   

14.
Optimal media for induction of somatic embryogenesis from mature and immature tissues ofG. hirsutum L. cv Coker 312 were determined. Explants of three-day-old seedlings form somatic embryos in 100% of cultures when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 0.5 mg/1 kinetin. Mature tissues are more recalcitrant than immature tissues and formed somatic embryos on a limited number of hormone treatments. Stem tissue is most readily induced to form somatic embryos by 2 mg/1 napthaleneacetic acid plus 0.1 mg/1 kinetin, whereas leaf tissue formed embryos best when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 1.0 mg/1 (2-isopentyl)-adenine, or 1.0 mg/1 napthaleneacetic acid plus 0.5 mg/1 (2-isopentyl)-adenine.  相似文献   

15.
16.
Summary Calli derived from immature embryos of barley and wheat genotypes were screened for their resistance to purified culture filtrate produced by the fungus Helminthosporium sativum P.K. and B. Two selection methods were used: a continuous method in which four cycles of selection were performed one after another on toxic medium and a discontinuous method in which a pause on non-toxic medium was given after the second or third cycle of selection. The latter was superior as it allowed the calli to regain their regeneration ability. About 3,000 calli from two barley genotypes and 2,000 from two wheat genotypes were used for selection. The selection with the pathotoxins resulted in 6% to 17% surviving calli. Toxin tolerant callus lines of barley were characterised by protein isozymes. Zymograms showed one more isozyme than with the unselected sensitive callus. Barley and wheat plants have been regenerated from callus lines surviving the toxin treatment and in vivo testing against pathogen revealed that the majority of these plants were less sensitive.  相似文献   

17.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

18.
Summary Despite high commercial interest, the success of biotechnological applications in cotton (Gossypium hirsutum) has been limited due to difficulties in genetic transformation. Major problems have been genotype dependence and low frequency of somatic embryogenesis, making it difficult to regenerate plants from transgenic tissue. This study reports an increase in somatic embryogenesis efficiency and the induction of developmental synchrony in embryogenic callus cultures of cotton by a single cycle of myo-inositol depletion in liquid culture. Calluses were initiated on hypocotyl or cotyledon explants of cultivar Coker 312 by culturing these explants on callus-inducing solid medium [Murashige and Skoog salts plus vitamins of Gamborg's B5 medium, 30 g l−1 glucose, 100 mg l−1 myo-inositol, 2.2 μM 2,4-dichlorophenoxyacetic acid, and 0.88 μM 6-benzyladenine]. The calluses were transferred to an identical liquid basal medium devoid of plant growth regulators. This induced the development of embryogenic cells. Friable clumps of cells formed after 20 d in the medium were selectively collected over filter mesh 40 subjected to one cycle of myo-inositol starvation. This induced a highly synchronized embryogenesis in the culture. The optimized protocol gave 100% embryos at the globular stage, out of which more than 80% developed into bipolar torpedo-stage embryos. About 68% of these were converted to plantlets by subculturing onto a simplified solid medium, and finally grown into healthy, fertile plants.  相似文献   

19.
20.
Meloidogyne incognita is a nematode responsible for huge losses of economically important crops. The control of this pathogen is heavily centered on chemical nematicides, which are toxic to humans and environment, besides being very expensive. Alternatively, resistant varieties of cotton generated from conventional breeding programs represent an attractive strategy for the control of M. incognita. In this context, the goal of the work reported here was to analyze the gene expression profile of one resistant and one susceptible cotton genotype infected with M. incognita aiming to understand the mechanisms involved in resistance. EST libraries of cotton in both resistant and susceptible to infection by M. incognita were constructed and sequenced, generating 2261 sequences that were assembled into 233 contigs and 1593 singlets. Genes differentially expressed were observed in both resistant and susceptible cotton. Twenty genes were found to be expressed exclusively in the resistant cotton genotype, with functions related to pathogen recognition, signal transduction, defense mechanisms and protein synthesis transport and activation. The coordinated action of these genes suggests the existence of a complex defense pathway towards nematode attack in cotton. Our data indicate some candidate genes for validation and use through transformation in other agronomically important plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号