首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass-dense granules of Dictyostelium discoideum were shown to contain large amounts of phosphorus, magnesium, and calcium, as determined by x-ray microanalysis, either in situ or when purified using iodixanol gradient centrifugation. The high phosphorus content was due to the presence of pyrophosphate and polyphosphate, which were also present in the contractile vacuoles. Both organelles also possessed a vacuolar H(+)-ATPase, an H(+)-pyrophosphatase, and a Ca(2+)-ATPase, as determined by biochemical methods or by immunofluorescence microscopy. The H(+)-pyrophosphatase activity of isolated mass-dense granules was stimulated by potassium ions and inhibited by the pyrophosphate analogs aminomethylenediphosphonate and imidodiphosphate and by KF and N-ethylmaleimide in a dose-dependent manner. The mass-dense granules and the contractile vacuole appeared to contact each other when the cells were submitted to hyposmotic stress. Acetazolamide inhibited the carbonic anhydrase activity of the contractile vacuoles and prolonged their contraction cycle in a dose-dependent manner. Similar effects were observed with the anion exchanger inhibitor 4,4' -diisothiocyanatodihydrostilbene-2, 2' -disulfonic acid and the vacuolar H(+)-ATPase inhibitor bafilomycin A(1). Together, these results suggest that the mass-dense granules of D. discoideum are homologous to the acidocalcisomes described in protozoan parasites and are linked to the function of the contractile vacuole.  相似文献   

2.
Tetrahymena pyriformis ingested Escherichia coli for 15–20 min and the fine structure of food vacuoles was analyzed 5, 15, 30, 60, 90, 120, and 180 min after uptake began. From this analysis, eight vacuolar stages could be defined, and three to four stages were found in each sample. Stage 1 represents forming and newly detached vacuoles with a random distribution of bacteria. Stage 2 is the “dehydration” vacuole in which the bacteria are compacted and a few may lyse. Stage 3, corresponding to the acid phosphatase-positive stage, has an electron-dense vacuolar matrix revealing components of lysed bacteria and the translucent coat of intact bacteria. Stage 4 is the “halo” stage where centrally located, intact bacteria are surrounded by lysed material being removed by pinocytic activity of the vacuolar membrane. Stage 5 represents lysis of bacteria remaining intact until this stage; the stage is apparently followed by a second stage 4. Stage 6 contains few bacterial profiles in a smeared homogeneous mass. Stage 7 contains numerous vesicular membranous structures which apparently become transferred to the cytoplasm as such. Stage 8 represents defecation vacuoles derived from fusion of smaller vacuoles. The main findings are as follows: I) Bacterial lysis may occur during acidification of the vacuole prior to fusion with lysosomes. II) Digestion of bacteria apparently occurs in “bursts” as indicated by the extended time that vacuoles in stages 4 and 5 are present. III) Bacterial membranous structures seem to be transferred directly to the cytoplasm of Tetrahymena. IV) Mass defecation occurs 2 h after uptake begins.  相似文献   

3.
Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.  相似文献   

4.
Summary Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.  相似文献   

5.
ABSTRACT. The temporal changes in the size and pH of digestive vacuoles (DV) in Paramecium caudatum were reevaluated. Cells were pulsed briefly with polystyrene latex spheres or heat-killed yeast stained with three sulfonphthalein indicator dyes. Within 5 min of formation the intravacuolar pH declined from ~7 to 3. With the exception of a transient and early increase in vacuolar size, vacuole condensation occurred rapidly and paralleled the acidification so that vacuoles reached their lowest pH and minimal size simultaneously. Neutralization and expansion of vacuole size began when vacuoles were GT8 min old. No labeled vacuoles were defecated prior to 21 min after formation but almost all DV were defecated within 1 h so that the digestive cycle of individual vacuoles ranged from 21 to 60 min. Based on these size and pH changes, the presence of acid phosphatase activity, and membrane morphology, digestive vacuoles can be grouped into four stages of digestion. The DV-I are GT6 min old and undergo rapid condensation and acidification. The DV-II are between 4 to 10 min old and are the most condensed and acidic vacuoles. The DV-III range in age from 8 to ~20 min and include the expanding or expanded vacuoles that result from lysosomes fusing with DV-II. The DV-IV are GD21 min old, and since digestion is presumably completed, they can be defecated. The rise in intravacuolar pH that accompanies vacuole expansion suggests that lysosomes play a role in vacuole neutralization in addition to their degradative functions. The acidification and condensation processes in DV-I appear to be unrelated to lysosomal function, as no acid phosphaiase activity has been detected at this stage, but may be related to phagosomal functions important in killing food organisms, denaturing proteins prior to digestion, and preparing vacuole membrane for fusion with lysosomes.  相似文献   

6.
Arabidopsis thaliana AtMTP1 belongs to the cation diffusion facilitator family and is localized on the vacuolar membrane. We investigated the enzymatic kinetics of AtMTP1 by a heterologous expression system in the yeast Saccharomyces cerevisiae, which lacked genes for vacuolar membrane zinc transporters ZRC1 and COT1. The yeast mutant expressing AtMTP1 heterologously was tolerant to 10 mm ZnCl(2). Active transport of zinc into vacuoles of living yeast cells expressing AtMTP1 was confirmed by the fluorescent zinc indicator FuraZin-1. Zinc transport was quantitatively analyzed by using vacuolar membrane vesicles prepared from AtMTP1-expressing yeast cells and radioisotope (65)Zn(2+). Active zinc uptake depended on a pH gradient generated by endogenous vacuolar H(+)-ATPase. The activity was inhibited by bafilomycin A(1), an inhibitor of the H(+)-ATPase. The K(m) for Zn(2+) and V(max) of AtMTP1 were determined to be 0.30 microm and 1.22 nmol/min/mg, respectively. We prepared a mutant AtMTP1 that lacked the major part (32 residues from 185 to 216) of a long histidine-rich hydrophilic loop in the central part of AtMTP1. Yeast cells expressing the mutant became hyperresistant to high concentrations of Zn(2+) and resistant to Co(2+). The K(m) and V(max) values were increased 2-11-fold. These results indicate that AtMTP1 functions as a Zn(2+)/H(+) antiporter in vacuoles and that a histidine-rich region is not essential for zinc transport. We propose that a histidine-rich loop functions as a buffering pocket of Zn(2+) and a sensor of the zinc level at the cytoplasmic surface. This loop may be involved in the maintenance of the level of cytoplasmic Zn(2+).  相似文献   

7.
The sequential discharge of neutrophilic polymorphonuclear leukocyte (PMN) granules—azurophils and specifics—was investigated by electron microscopy and cytochemistry. Thus the enzyme content of PMN phagocytic vacuoles was determined at brief intervals after phagocytosis of bacteria, utilizing peroxidase as a marker enzyme for azurophil granules, and alkaline phosphatase for specifics. At 30 s, approximately half the phagocytic vacuoles were reactive for alkaline phosphatase, whereas none contained peroxidase. Peroxidase-containing vacuoles were rarely seen at 1 min, but by 3 min, vacuoles containing both enzymes were consistently present. Alkaline phosphatase was found in both small and large vacuoles, whereas peroxidase was visible only in large ones. By 10 min, very big phagocytic vacuoles containing considerable amounts of reaction product for both enzymes were evident. These observations indicate that the two types of PMN granules discharge in a sequential manner, specific granules fusing with the vacuole before azurophils. In an earlier paper, we reported that the pH of phagocytic vacuoles drops to 6.5 within 3 min and to ~4 within 7–15 min. Substances known to be present in specific granules (alkaline phosphatase, lysozyme, and lactoferrin) function best at neutral or alkaline pH, whereas most of those contained in azurophil granules (i.e., peroxidase and the lysosomal enzymes) have pH optima in the acid range. Hence the sequence of granule discharge roughly parallels the change in pH, thereby providing optimal conditions for coordinated activity of granule contents.  相似文献   

8.
The foed vacuoles of Paramecium aurelia , when examined in the electron microscope, are seen to be surrounded by small secondary vacuoles 0.05 - 0.2 μ. in diameter. Similar small vacuoles also surround the deepest part of the buccal cavity. Young focd vacuoles, i.e. those containing well preserved bacteria, are encircled by a smooth. vacuolar membrane. In older food vacuoles the vacuolar membrane in a transverse section often appears more wavy with small gulfs and protuberances. It is suggested that the small surrounding vacuoles are formed by the vacuolar membrane of older vacuoles by means of a process similar to pinocytosis. There is no evidence, however, that formation of small surrounding vacuoles takes place by pinocytosis in young food vacuoles. Examination of the cytoplasmic membrane of the deepest parts of the buccal cavity shows a similar prccess of vacuole formation by pinocytosis.  相似文献   

9.
Porphyra umbilicalis, a marine red alga occurring in the intertidal zone of the cold North Sea, tolerates a wide range of osmotic conditions from 0.2 x to 6 x artificial seawater medium ASP12. In cells osmotically adapted for two weeks, photosynthesis and respiration are progressively inhibited in media more concentrated than 2 x. In both hypo- and hyperosmotic stress ranges, the most striking fine structural change is the development of vacuoles. In comparison to 1 x medium, where vacuoles are virtually lacking, the vacuolar part of the protoplasm increases 6-fold in 0.2 x and 10-fold in 3.5 x medium, respectively. However, at extreme hyperosmotic stress (6 x medium) the vacuolar part is extremely small. The largest cell volumes are found in 0.2 x and 3.5 x media, the smallest one in 6 x medium. In the osmotically regulated range (0.2–3.5 x medium), the regulated parameter is the volume of the protoplasm without the vacuolar system. It is suggested that at hyperosmotic stress the vacuoles may serve as osmotically active compartment, probably by accumulation of inorganic ions. The intracellular content of Floridean starch granules decreases with increasing osmotic pressure, possibly indicating the significance of soluble organic constituents as osmotically active solutes.Member of the Arbeitsgemeinschaft für Elektronenmikroskople un der Ticrärztlichen Hochschule Hannover  相似文献   

10.
Ectomycorrhizas produced between Pisolithus tinctorius and Eucalyptus pilularis under axenic conditions were rapidly frozen, freeze-substituted in tetrahydrofuran and embedded anhydrously, and dry-sectioned for X-ray microanalysis. The vacuoles of the sheath and Hartig net hyphae were rich in phosphorus and potassium. They also contained sulfur and variable amounts of chlorine. In anhydrously processed freeze-substituted mycorrhizas, dispersed electron-opaque material filled the fungal vacuoles. X-ray maps indicated that P was distributed evenly throughout the entire vacuole profile and was not concentrated in spherical bodies or subregions of the vacuole. There were no electron-opaque granules surrounded by electron-lucent areas, such as are commonly seen in chemically fixed material. The fungal vacuoles were also rich in K, which similarly gave a signal from the entire vacuolar profile. Such P-rich vacuoles occurred in both the mycorrhizal sheath and Hartig net hyphae. Stained sections of ether-acrolein freeze-substituted mycorrhizas also showed only dispersed material in the fungal vacuoles as, in most cases, did acetone-osmium freeze-substituted material. Precipitation of metachromatic granules by ethanol suggested that large amounts of polyphosphate are stored in these regions under the conditions of our experiments, as well as in the tips of actively growing hyphae of the same fungus. The higher plant vacuoles of ectomycorrhizas gave a much lower signal for K, and P was barely detectable. Much more K was located in the vacuoles of the root exodermal cells than in epidermal cells. The analysis of element distribution between the vacuole and cytoplasm in root cells agrees well with that found for other plant species using other techniques. We conclude that polyphosphate is indeed present in the vacuoles of the fungal cells of these ectomycorrhizas, but that in vivo it is in a dispersed form, not in granules.  相似文献   

11.
DIGESTION AND THE DISTRIBUTION OF ACID PHOSPHATASE IN BLEPHARISMA   总被引:1,自引:1,他引:0       下载免费PDF全文
Suspensions of Blepharisma intermedium were fed latex particles for 5 min and then were separated from the particles by filtration. Samples were fixed at intervals after separation and incubated to demonstrate acid phosphatase activity. They were subsequently embedded and sectioned for electron microscopy. During formation of the food vacuole, the vacuolar membrane is acid phosphatase-negative. Within 5 min, dumbbell-shaped acid phosphatase-positive bodies, possibly derived from the the acid phosphatase-positive Golgi apparatus, apparently fuse with the food vacuole and render it acid phosphatase-positive. A larger type of acid phosphatase-positive, vacuolated body may also fuse with the food vacuole at later stages. At about 20 min after formation, acid phosphatase-positive secondary pinocytotic vesicles pinch off from the food vacuoles and approach a separate system of membrane-bounded spaces. By 1 hr after formation, the food vacuole becomes acid phosphatase-negative, and the undigested latex particles are voided into the membrane-bounded spaces. The membrane-bounded spaces are closely associated with the food vacuole at all stages of digestion and are generally acid phosphatase-negative. Within the membrane-bounded spaces, dense, pleomorphic, granular bodies are found, in which are embedded mitochondria, paraglycogen granules, membrane-limited acid phosphatase-containing structures, and Golgi apparatuses. The granular bodies may serve as vehicles for the transport of organelles through the extensive, ramifying membrane-bounded spaces.  相似文献   

12.
The filamentous hemiascomycete Ashbya gossypii is used for industrial riboflavin production. We examined riboflavin uptake and excretion at the plasma membrane using riboflavin auxotrophic and overproducing mutants. The riboflavin uptake system had low activity [Vmax = 20 +/- 4 nmol min(-1) g(-1) mycelial dry weight (dw)] and high affinity (KM = 40 +/- 12 microM). Inhibitor studies with the analogs FMN and FAD revealed high specificity of the uptake system. Excretion of riboflavin was not the consequence of non-specific permeability of the plasma membrane. Excretion rates in the mid-production phase were determined to be 2.5 nmol min(-1) g(-1) dw for wild-type cells and 66.7 nmol min(-1) g(-1) dw for an overproducing mutant, respectively. Inhibition of the reverse reaction, riboflavin uptake, led to an increase in apparent riboflavin efflux in the early production phase, indicating the presence of a separate excretion carrier. Riboflavin accumulation in A. gossypii vacuoles leading to product retention was found to be a secondary transport process. To address the question of whether a flux from the vacuoles back into the cytoplasm is present, we characterized efflux in hyphae in which the plasma membrane was permeabilized with digitonin. Efflux kinetics across the vacuolar membrane were unaffected by the lack of vacuolar H+ATPase activity and ATP, suggesting a passive mechanism. Based on the characterization of riboflavin transport processes in this study, the design of new production strains with improved riboflavin excretion may be possible.  相似文献   

13.
J Vorísek 《Histochemistry》1989,92(5):421-432
Logarithmic cultures of Saccharomyces cerevisiae strains LBG H 1022, FL-100, X 2180 1A and 1B were studied together with the mutants pep4-3, sec18-1 and sec7-1. The necessary ultrastructural observations showed that, as a rule, juvenile vacuoles were formed de novo from perinuclear endoplasmic reticulum cisternae (ER) packed and inflated with electron-dense (polyanionic) matrix material. This process was disturbed solely in the sec18-1 mutant under non-permissive conditions. The vacuolar marker enzymes adenosine triphosphatase (ATPase) and alkaline phosphohydrolase (ALPase) were assayed by the ultracytochemical cerium precipitation technique. The neutral ATPase was active in vacuolar membranes and in the previously shown (coated) microglobules nearby. ALPase activity was detected in microglobules inside juvenile vacuoles, inside nucleus and in the cytoplasm as well as in the membrane vesicles and in the periplasm. The sites of vacuolar protease carboxypeptidase Y (CPY) activity were assayed using N-CBZ-L-tyrosine-4-methoxy-2-naphthyl-amide (CBZ-Tyr-MNA) as substrate and sites of the amino-peptidase M activity using Leu-MNA as substrate. Hexazotized p-rosaniline served as a coupler for the primary reaction product of both the above proteases (MNA) and the resulting azo-dye was osmicated during postfixation. The CPY reaction product was found in both polar layers of vacuolar membranes (homologous to ER) and in ER membranes enclosing condensed lipoprotein bodies which were taken up by the vacuoles of late logarithmic yeast. Both before and after the uptake into the vacuoles the bodies contained the CPY reaction product in concentric layers or in cavities. Microglobules with CPY activity were also observed. Aminopeptidase was localized in microglobules inside the juvenile vacuoles. These findings combined with the previous cytochemical localizations of polyphosphates and X-prolyl-dipeptidyl (amino)peptidase in S. cerevisiae suggest the following cytologic mechanism for the biosynthetic protein transport: coated microglobules convey metabolites and enzymes either to the cell surface for secretion or enter the vacuoles in all phases of the cell cycle. The membrane vesicles represent an alternative secretory mechanism present in yeast cells only during budding. The homology of the ER with the vacuolar membranes and with the surface membranes of the lipoprotein condensates (bodies) indicates a cotranslational entry of the CPY into these membranes. The secondary transfer of a portion of CPY into vacuoles is probably mediated by the lipoprotein uptake process.  相似文献   

14.
Ren HM  Zhou SK  He ZY  Gu DY 《生理学报》2001,53(5):329-333
研究者普遍认为糖蛋白激素存在于促性腺激素(gonadotrophin,GTH)细胞的颗粒内,目前在生殖内分泌领域内对糖蛋白激素形成与释放的研究也主要集中在细胞内颗粒的变化上,我们近年的研究发现,大鼠垂体GTH细胞内黄体生成激素(luteinizing hormone,LH)的分泌与细胞内液泡的形态变化有密切的关系。铁形态也随液泡的形态变化而变化,因而推测“LH的储存与释放可能与液泡有极大的关系”,为进一步揭示垂体细胞的液泡内是否存在LH和探讨哺乳动物垂体细胞的液泡是否具有储存与释放LH的功能,本研究对大鼠垂体细胞的液泡进行了分离和纯化。用SDS-PAGE,Western immunobloting及Con A/HRP等方法分别对纯化的垂体,大脑皮层及肝脏组织的液泡进行了蛋白质,LH及糖蛋白的分析。结果显示:(1)垂体,皮层及肝脏细胞的液泡内均含有丰富的,分子量大小不等的蛋白质成分,不同组织的细胞液泡内蛋白质成分有许多是相似的;(2)垂体组织及其液泡内均含有LH,而且在相同浓度的蛋白量中,两者LH的水平并无明显差异;(3)垂体,皮层和肝脏组织液泡内均有分子量不同的糖蛋白,但只有垂体细胞的液泡内才有与LH位置相同的糖蛋白染色谱带。上述结果表明:虽然哺乳动物不同组织的细胞液泡内含有许多相似的蛋白质成分,但LH是特异性地存在于垂体细胞液泡内。在这些LH分子中,至少有一部分是已经装配了糖基的完整LH分子。因此,垂体细胞的液泡有可能具有储存与释放LH的功能。  相似文献   

15.
Summary The internalization of the extracellular markers horseradish peroxidase (HRP) and cationized ferritin (CF) by the melanotrophs of the intermediate lobe of the rat pituitary was studied during short-time incubation of mechanically dissociated cells or in cell culture after 5 days. After a 30 min exposure, the tracers were found in electron-lucent granules or vacuoles of approximately the same size as the secretory granules, situated 200–500 nm from the cell membrane. In the cultured cells, which showed a higher rate of tracer uptake, internalization was followed for 1, 2 and 5 min after labelling and during 2 h of exposure. Initially, the label was seen only in coated pits and coated vesicles at the cell membrane. Larger vacuoles were first seen after 2–5 min of incubation. After 2 h of exposure the labelling pattern was distinctly different for the two tracers. CF was found in larger vacuoles of varying morphology, in dilatations at the base of cilia, within Golgi saccules and at the edge of the electron-dense core of forming secretory granules. HRP was found in an extensive array of tubulovesicular structures extending throughout the cytoplasm. The Golgi complex and forming granules were, however, not labelled with HRP. The study identifies part of the electron-lucent granules or vacuoles in the melanotroph as endosomes, and shows that the melanotrophs sort CF and HRP via diverting pathways after internalization, suggesting that granule membrane, and possibly its functional components, can be recycled in these cells.  相似文献   

16.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

17.
The coenzyme-independent dihydroorotate dehydrogenase (EC 1.3.3.1) linking the pyrimidine biosynthetic pathway to the respiratory chain, was ultracytochemically localized by the tetrazolium method in derepressed exponential-phase cultures ofSaccharomyces cerevisiae. Biochemical analysis showed a considerable variation of this enzyme activity in inverse proportion to the aeration of the yeast cultures. The assay also showed that after prefixation of yeast cells with 1% glutaraldehyde at 0°C for 20 min, approximately one-half of the enzyme activity was preserved. The cytochemical reaction mixture contained dihydroorotate (2 mmol/L), thiocarbamyl nitroblue tetrazolium (0.44 mmol/L), phenazine methosulfate (0.16 mmol/L) and KCN (1.7 mmol/L) in Tris-HCl buffer (100 mmol/L) of pH 8.0. The osmicated formazan deposits featured envelopes of mitochondria and of nuclei and were prominent in the mitochondrial inclusions and in the vacuolar membranes. The latter sites of dihydroorotate dehydrogenase activity represent biosynthetic activity in yeast vacuoles, still generally assumed to function as yeast lysosomes and storage organelles. In the light of the generally observed invasions of juvenile yeast vacuoles into mitochondria, the enzymic sites observed in mitochondrial inclusion were considered as evidence of the interactions of yeast vacuoles and mitochondria. Transfer of vacuolar membranes with dihydroorotate dehydrogenase activity into mitochondrial matrix is suggested.  相似文献   

18.
Plants performing crassulacean acid metabolism show a large nocturnal accumulation of malic acid in the vacuole of the photosynthetic cells. It has been postulated that an H+-translocating ATPase energizes the transport of malic acid across the tonoplast into the vacuole. In the present work we have characterized the ATPase activity associated with vacuoles of the crassulacean-acid-metabolism plant Kalancho? daigremontiana and compare it with other phosphohydrolases. Vacuoles were isolated by polybase-induced lysis of mesophyll-cell protoplasts. The vacuoles had a high activity of unspecific acid phosphatase (pH optimum 5.3). The acid phosphatase was strongly inhibited by ammonium molybdate (with 50% inhibition at about 0.5 mmol m-3), but was not completely inhibited even at much higher ammonium-molybdate concentrations. In contrast, the vacuolar ATPase activity, assayed in the presence of 100 mmol m-3 ammonium molybdate, had a pH optimum of 8.0. ATP was the preferred substrate, but GTP, ITP and ADP were hydrolyzed at appreciable rates. The mean ATPase activity at pH 8.0 was 14.5 nmol h-1 (10(3) vacuoles)-1, an average 13% of which was attributable to residual acid-phosphatase activity. Inorganic-pyrophosphatase activity could not be demonstrated unambiguously. The vacuolar ATPase activity was Mg2+-dependent, had an apparent Km for MgATP2- of 0.31 mol m-3, and was 32% stimulated by 50 mol m-3 KCl. Of the inhibitors tested, oligomycin slightly inhibited the vacuolar ATPase activity and diethylstilbestrol and NO-3 were both markedly inhibitory. Dicyclohexylcarbodiimide and tributyltin were also strongly inhibitory. Tributyltin caused a 50% inhibition at about 0.3 mmol m-3. This is taken as evidence that the vacuolar ATPase might function as an H+-translocating ATPase. It is shown that the measured activity of the vacuolar ATPase would be of the right order to account for the observed rates of nocturnal malic-acid accumulation in K. daigremontiana.  相似文献   

19.
Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.  相似文献   

20.
The petal color of morning glory, Ipomoea tricolor cv. Heavenly Blue, changes from purplish red to blue during flower opening. This color change is caused by an unusual increase in vacuolar pH from 6.6 to 7.7 in the colored adaxial and abaxial cells. To clarify the mechanism underlying the alkalization of epidermal vacuoles in the open petals, we focused on vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase) and an isoform of Na+/H+ exchanger (NHX1). We isolated red and blue protoplasts from the petals in bud and fully open flower, respectively, and purified vacuolar membranes. The membranes contained V-ATPase, V-PPase and NHX1, which were immunochemically detected, with relatively high transport activity. NHX1 could be detected only in the vacuolar membranes prepared from flower petals and its protein level was the highest in the colored petal epidermis of the open flower. These results suggest that the increase of vacuolar pH in the petals during flower opening is due to active transport of Na+ and/or K+ from the cytosol into vacuoles through a sodium- or potassium-driven Na+(K+)/H+ exchanger NXH1 and that V-PPase and V-ATPase may prevent the over-alkalization. This systematic ion transport maintains the weakly alkaline vacuolar pH, producing the sky-blue petals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号