首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-2-butanone] changes the morphology and partitioning of dry matter in cucumber ( Cucumis sativus L. cv. National Pickling) seedlings. The dry weights, potassium and cytokinin levels in the cotyledons and roots of the treated seedlings were higher, whereas the hypocotyl weights were lower than the controls. When etiolated intact seedlings or cotyledons excised from triadimefon-pretreated dark-grown seedlings were exposed to light, chlorophyll synthesis in the pretreated cotyledons was stimulated. Triadimefon does not have cytokinin-like activity in the cucumber cotyledon greening bioassay, but appears to induce the plants to produce more cytokinims, probably by stimulating root growth. Hence it is proposed that the stimulation of chlorophyll production by triadimefon in cucumber cotyledons is mediated by maintaining high levels of potassium and cytokinins in the cotyledons.  相似文献   

2.
Benzyladenine (BA) and KCl were applied to detached cucumber ( Cucumis sativus L. cv. Ohio) cotyledons in continuous light or in the dark with subsequent light. BA brought about an increase in fresh weight and in DNA, RNA and carotenoid contents in both treatments. KCl did not cause an increase in fresh weight and cellular constituents in the dark, but it did result in an increased fresh weight and DNA content after illumination or in continuous light. BA + KCl treatment resulted in increased carotenoid and DNA contents in the dark, and in increases in fresh weight and all cellular constituents upon subsequent exposure to light. The effects of BA and BA + KCl on growth and chlorophyll synthesis decreased with cotyledon age.
BA pretreatment in the dark eliminated the lag phase in chlorophyll synthesis and increased the rate of synthesis. Treatment in continuous light had little effect. KCl did not shorten the lag phase in chlorophyll synthesis, but it stimulated the rate of synthesis in the light. Dark pretreatment with BA + KCl markedly increased the effect of BA on chlorophyll synthesis. Chlorophyll content and fresh weight were higher in cotyledons treated with BA followed by KCl than in cotyledons treated in the reverse order. These results suggest that growth and greening in cucumber cotyledons are primarily controlled by BA and that KCl intensifies the BA effect after irradiation.  相似文献   

3.
In the cucumber cotyledon greening system, abscisic acid (ABA)is more potent inhibitor of growth and chlorophyll productionand/or destruction than methyl jasmonate (MJ). The inhibitoryeffect of ABA is apparent within 5 h of exposure to light whereasMJ is ineffective at all concentrations tested (10–6 to10–3 M). With longer exposure of 24 h to light and inthe presence of 40 mM KC1, the inhibition of growth and chlorophyllproduction by ABA is more pronounced whereas MJ does not inhibitgrowth and inhibits chlorophyll levels only at the higher concentrations.Both benzyladenine and KC1 stimulate chlorophyll productionand increase the fresh weights of the cucumber cotyledons andeither one of these compounds reverse the inhibitory effectsof ABA. Inhibition of chlorophyll production by ABA is valuableas a simple and rapid bioassay for abscisic acid. Under similarconditions cytokinins increase chlorophyll production and hencethe cucumber cotyledon greening system is ideal for detectingboth ABA which inhibits and cytokinins which stimulate chlorophyllproduction. (Received December 6, 1982; Accepted June 9, 1983)  相似文献   

4.
The triazole growth retardant BAS 111‥W delayed senescence in cotyledons of pumpkin ( Cucurbita maxima L. cv. Gelbe genetzte Riesenmelone) and stimulated chlorophyll synthesis in greening cotyledons of oilseed rape ( Brassica napus L. cv. Petranova) seedlings. In both cases, changes of phytohormone-like substances in the cotyledons were analyzed on a fresh weight basis by immunoassay.
After soil treatment with increasing retardant concentrations, a close correlation was observed in senescing cotyledons of pumpkin between a reduced loss in total chlorophyll and increasing levels of dihydrozeatin riboside (DZR) and trans -zeatin riboside (ZR)-type cytokinins. In contrast, the levels of isopentenyladenosine (IPA)-type cytokinins, 3-indoleacetic acid (IAA) and gibberellin (GA) did not change significantly. The levels of abscisic acid (ABA) were slightly elevated at low retardant concentrations but dropped considerably below those of controls at higher doses. Consequently, the molar ratio of total cytokinin to ABA content changed from approximately 1:40 in controls (50% of initial chlorophyll) to 1:3 in cotyledons treated with 3 mg BAS 111‥W plant−1 (85% of initial chlorophyll). These changes, together with the known reduction of ethylene production by plants treated with nitrogen-heterocyclic retardants, can explain the delayed senescence in pumpkin cotyledons. Likewise, when etiolated, BAS 111‥W-treated seedlings of oilseed rape were exposed to light, the stimulation of chlorophyll synthesis in the cotyledons was accompanied by an accumulation of DZR- and, particularly, ZR-type cytokinins and IAA. In contrast, GA and ABA contents decreased slightly. We conclude that the influence of BAS 111‥W on cytokinin levels might be involved in the stimulation of greening.  相似文献   

5.
A study of the kinetics of chlorophyll (Chl) synthesis in cotyledons of etiolated cucumber seedlings ( Cucumis sativus L . cv. Delilah) treated with 5×10-5 M -ben-zyladenine (BA) showed that cytokinin, like a red light pulse, could inhibit as well as promote pigment accumulation depending on the length of the dark period following induction. Spraying intact, dark-grown seedlings with BA, 24 h prior to white light exposure, eliminated the lag phase in Chl synthesis, while treatment with hormone 72 h before greening not only delayed the onset of synthesis, but it also reduced the amount of Chl accumulated after 24 h continuous white light. Impairment of Chl formation was correlated with inhibited regeneration of protochlorophyll and delayed appearance of the light harvesting Chl alb polypeptide. Application of σ-aminolevulinic acid (15 m M ) 2 h before white light exposure shortened the lag phase in Chl synthesis in control as well as in inhibited cotyledons, but the adverse effect of the red light and BA treatments on long-term Chl accumulation (24 h) was not reversed. Application of glutamate did not stimulate Chl production. Simultaneous treatment with hormone and red light 72 h before greening enhanced their separate inhibitory effects on Chl synthesis, but when given together 24 h prior to white light, their promotive effects on pigment accumulation were not additive.  相似文献   

6.
Light was required for induction of nitrate reductase (NR, E.C. 1.6.6.1) in intact cotyledons of 2-day old seedlings ofLactuca sativa L. Molybdate strongly enhanced efficiency of induction. Benzyladenine (BA), gibberellin, and succinic acid-2,2-dimethylhydrazide reduced the enzyme activity. BA thrice enhanced incorporation of labelled leucine to the protein fraction. (2-chloroethyl)trimethylammonium chloride did not affect NR activity and markedly inhibited greening and protein synthesis. KNO3 stimulated protein synthesis as well as growth of the cotyledons.  相似文献   

7.
8.
Cotyledon expansion in response to blue light was compared for wild-type Arabidopsis thaliana (L.) Heynh. and the mutants blu3 and hy4, which show reduced inhibition of hypocotyl growth in blue light. White, blue, and red light stimulated cotyledon expansion in both intact and excised cotyledons of wild-type seedlings (ecotypes No-0, WS, Co-0, La-er). Cotyledons on intact blu3 and hy4 seedlings did not grow as well as those on the wild type in response to blue light, but pretreatment of blu3 seedlings with low fluence rates of red light increased their responsiveness to blue light. Excision of cotyledons alleviated the mutant phenotype so that both mutant and wild-type cotyledons grew equally well in blue light. The loss of the mutant cotyledon phenotype upon excision indicates that the blu3 and hy4 lesions affect cotyledon expansion indirectly via a whole-plant response to light. Furthermore, the ability of excised, mutant cotyledons to grow normally in blue light shows that this growth response to blue light is mediated by a photosystem other than the ones impaired by the blu3 and hy4 lesions.  相似文献   

9.
The involvement of ethylene in red-light-induced stimulationof chlorophyll (Chl) formation was studied because one of thered-light effects on Chl formation (the lateappearing effect)interacts with the ethylene effect in 3-day-old excised etiolatedcotyledons of cucumber (Cucumis sativus L. cv. Aonagajibai).Ethylene production by etiolated cotyledons of intact seedlingsin the dark is enhanced by a red-light pulse, but the effectdoes not occur in excised cotyledons. Application of ethylenein the dark to 3-day-old intact seedlings has little effecton Chl formation in the cotyledon during subsequent continuousillumination, although ethylene pretreatment of 5-day-old seedlingssignificantly stimulates Chl formation. Removal of endogenousethylene by mercuric perchlorate [Hg(ClO4)2] does not specificallysuppress the red-light action on Chl formation in both attachedand excised cotyledons. Inhibition of ethylene synthesis byaminoethoxyvinylglycine does not affect the red-light effecton Chl formation in excised cotyledons. These facts indicatethat ethylene does not operate as a mediator of red light instimulating Chi formation in either attached or excised cotyledons. (Received December 13, 1981; Accepted March 30, 1981)  相似文献   

10.
N6-Benzyladenine (BA) was applied to intact bean (Phaseolusvulgaris L.) primary leaves at 2 and 6 days after imbibition,when they were in the cell division and post-cell division stages,respectively. BA treatment at day 2 temporarily inhibited an increase in chlorophyllcontent in the following day, but stimulated it in later days.No such inhibition by BA was observed for changes with timein DNA, RNA, and protein content and f. wt. On the other hand,BA treatment at day 6 enhanced RNA and protein content, withoutsignificant influence on DNA and chlorophyll content and f.wt. The mode of cytokinin action on greening in leaves during cell-divisiongrowth seems to be different from that in etiolated cotyledons. Phaseolus vulgaris L., bean, greening, benzyladenine, DNA, RNA, protein  相似文献   

11.
Inter-organ control of greening in etiolated cucumber (Cucumis sativus L. cv. Aonagajibae) cotyledons was investigated. Four- or six-day-old excised or intact etiolated cucumber cotyledons were illuminated under aerobic conditions. Excised cotyledons without hypocotyl hooks produced chlorophyll without a prolonged lag phase and the rate of chlorophyll formation was not depressed if they were illuminated immediately after excision. If the excised cotyledons were incubated in the dark before illumination, chlorophyll accumulation at the end of 6 h of continuous illumination was remarkably lowered as the dark period lengthened, especially in 6-day-old cotyledons. The rapid loss of chlorophyll-forming capacity of excised cotyledons during dark preincubation suggests a stimulatory effect of hypocotyls on the greening in cotyledons. The treatment of excised cotyledons with bleeding sap in the dark for 18 h resulted in the promotion of chlorophyll formation during subsequent continuous illumination. Partial fractionation of bleeding sap with organic solvents and paper chromatography indicates that the active substances showed the same behavior as cytokinins. These facts add weight to the hypothesis that cytokinins from roots flow into cotyledons and stimulate greening.  相似文献   

12.
Primary leaves of intact bean plants ( Phaseolus vulgaris L.) were treated with benzyladenine (BA) at different stages of ageing, BA promoted the synthesis of RNA, and soluble and insoluble proteins. The effects of BA stimulation differed depending on the age at which the leaf received the hormone treatment. In leaves attached to the plant, BA appeared to stimulate the rate of synthesis more than the rate of decomposition of RNA and protein, resulting in a net increase in RNA and protein. Both chloroplast and cytoplasmic ribosomes were still observed in intact yellowish green leaves. Polysomes in the cytoplasm increased remarkably when BA treatment was begun at late stages.  相似文献   

13.
Hypocotyl hooks have been shown to influence greening in excised cucumber (Cucumis sativus) cotyledons. The properties of the lag phase are greatly affected by the presence or absence of the hook tissue. A 45-second light pretreatment followed by 4 hours of darkness is sufficient to remove the lag phase from cotyledons with hooks, while hookless cotyledons require 2 hours of continuous illumination followed by 1 hour of dark incubation to break the lag phase. The effect of hooks on cotyledon greening is enhanced if the hooks are shielded from light. Cutting off the hooks after lag phase removal caused a marked decrease in chlorophyll accumulation in the cotyledons. These observations may indicate that the hypocotyl hooks produce a substance or substances needed in the greening process, which are translocated to the cotyledons. Indoleacetic acid, abscisic acid, gibberellin A3, 6-benzylamino purine and δ-aminolevulinic acid do not show any activity; on the other hand, ethylene appears to replace partially the hypocotyl hooks.  相似文献   

14.
Cotyledons excised without the hypocotyl hook from 6-day-old etiolated cucumber ( Cucumis sativus L. var. Elem) seedlings accumulated a significantly higher amount of chlorophyll than cotyledons excised with hooks or intact cotyledons. It was found that maximum ehancement of greening was achieved after 2 h of dark incubation following excision. Pretreatments with red light effected an additive rise in chlorophyll level in subsequent white light after a dark incubation, suggesting that the effects of excision and phytochrome on greening act independently. Etiolated seedlings were variously dissected before greening and it was found that enhancement occurred only when cotyledons were excised at the level of the hypocotyl hook or above it. Similar results were obtained when the dissected plants were pre-treated with red light.  相似文献   

15.
The activity of acifluorfen-methyl (AFM); methyl 5-(2-chloro-4-[trifluoromethyl] phenoxy)-2-nitrobenzoate in excised cucumber cotyledons (Cucumis sativus L.) was examined. AFM induced membrane disruption, was significantly greater when etiolated cotyledons were illuminated 16 hours at 150 microeinsteins per square meter per second photosynthetically active radiation versus incubation under illumination of 4-fold greater intensity. These results were unexpected since the loss of membrane integrity is initiated by photodynamic reactions. Untreated, etiolated cotyledons were not able to accumulate chlorophyll under the higher light intensity while control and herbicide treated cotyledons greened significantly under the lower intensity illumination suggesting that some process associated with greening stimulated AFM activity. Inhibition of greening by cycloheximide also reduced AFM activity. Intermittent lighting induced greening in AFM treated cotyledons without causing any detectable loss of plasmalemma integrity. Utilization of this system for pretreatment of cotyledons prior to continuous illumination revealed that activity was greater when tissue was greened in the presence of AFM than when herbicide treatments were made after a greening period of the same duration. The results indicate that the pigments in situ in etiolated tissue are sufficient, without greening, to initiate membrane disruption by AFM. However, greening increases the herbicidal efficacy greatly. Furthermore, the stimulation appears to be due to specific interactions between AFM and the developing plastid and is not attributable solely to an increase in endogenous photosensitizers.  相似文献   

16.
We investigated the effect of 24-epibrassinolide (BR) on the cytokinin-bioassay based on growth of isolated radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) cotyledons. BR stimulated growth of the cotyledons by about 50% when applied at saturating concentrations (3 μ M ). This effect was much lower than that of saturating concentrations of benzyladenine (BA) which was about 150% at 10 μ M BA. The effects of saturating concentrations of BR and BA were additive. BR, but not BA, stimulated H+-secretion by the cotyledons (measured as acidification of the incubation medium) slightly but reproducibly. These results indicate that the modes of action of the two phytoregulators are at least partially different.
BR-induced stimulation of H+-secretion was of similar amplitude to that induced by a concentration of fusicoccin (30 n M ) such as to stimulate growth to the same extent as BR. These results suggest that BR-induced stimulation of radish cotyledon growth might depend, at least in part, on BR-induced acidification of the wall space, similar to that observed on Azuki bean epicotyls and maize roots.  相似文献   

17.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

18.
The effect of Ca on senescence was followed in detached cucumber (Cucumis sativus L.) cotyledons floating on various solutions in the dark. Compared with those in water, cotyledons in 10−4 molar CaCl2 exhibited reduced chlorophyll loss and H2O2 production, reduced and delayed ethylene production, and did not undergo a burst in CO2 production. In contrast, Mg had little effect on cotyledon senescence, whereas K stimulated chlorophyll loss but did not increase H2O2 accumulation of ethylene and CO2 production. This reduction in the rate of senescence by Ca could also be achieved by increasing the endogenous levels of Ca in the cotyledons before excision, although the reduction was less than that with Ca in the external solution. The addition of H2O2 to the solutions on which cotyledons were floated stimulated chlorophyll breakdown, but effects on ethylene and CO2 were not consistent.  相似文献   

19.
Excision of the embryonic axis prior to 3 1/2 days of germination in the dark followed by 8-h of light decreased the total chlorophyll content of cucumber cotyledons but not squash cotyledons. Benzyladenine stimulated the accumulation of chlorophyll in the cotyledons of intact embryos and excised cotyledons in both cucumber and squash. Gibberellic acid had no effect. Atrazine inhibited chlorophyll formation in excised squash cotyledons. Benzyladenine also increased the carotenoid and xanthophyll content in the cotyledons from intact squash seedlings. The results suggest that pigment synthesis in cotyledons may be controlled by a number of substances produced in the embryonic axis and that cytokinin-like benzyladenine can simulate the action of one of them.  相似文献   

20.
The effects of heat shock (HS) pre-treatment on the response tobenzyladenine were studied in two plant model systems (1) retardation ofsenescence of Arabidopsis thaliana L. Heyhn rosette leavesand (2) induction of greening of detached Cucurbita pepoL.cotyledons. N6-benzyladenine (BA) retarded senescence of rosetteleaves of Arabidopsis thaliana (L) Heyhn and briefpre-treatment with HS (3 at 37)essentially enhanced this cytokinin effect. BA stimulated cotyledon greening inCucurbita pepo L due to the activation of chlorophyllsynthesis. Brief cotyledon pre-heating at moderate temperatures (3 at 33–35) also enhanced thiscytokinin effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号