首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that the introduction of macrophage apoE into mice lacking both apoE and the LDL receptor (apoE(-)(/-)/LDLR(-)(/-)) through bone marrow transplantation (apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-)) produces progressive accumulation of apoE in plasma without affecting lipid levels. This model provides a tool to study the effects of physiologically regulated amounts of macrophage apoE on atherogenesis in hyperlipidemic animals. Ten-week-old male apoE(-)(/-)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) (n = 11) or apoE(-)(/-)/LDLR(-)(/-) (n = 14) marrow. Although there were no differences between the two groups in lipid levels at baseline or at 5 and 9 weeks after transplantation, apoE levels in the apoE(+)(/+)LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) mice increased to 4 times the apoE levels of normal mice. This resulted in a 60% decrease in aortic atherosclerosis in the apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) compared with the apoE(-)(/-)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) controls, (15957 +/- 1907 vs. 40115 +/- 8302 micro m(2) +/- SEM, respectively). In a separate experiment, apoE(+)(/+)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) or apoE(-)(/-)/LDLR(-)(/-) marrow and placed on a high-fat diet for 8 weeks. In the absence of macrophage apoE, lesion area was increased by 75% in the aortic sinus and by 56% in the distal aorta. These data show that physiologic levels of macrophage apoE in the vessel wall are anti-atherogenic in conditions of severe hyperlipidemia and can affect later stages of plaque development.  相似文献   

2.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

3.
To evaluate the contribution of the macrophage low density lipoprotein receptor (LDLR) to atherosclerotic lesion formation, we performed bone marrow transplantation studies in different mouse strains. First, LDLR(-/-) mice were transplanted with either LDLR(+/+) marrow or LDLR(-/-) marrow and were challenged with an atherogenic Western type diet. The diet caused severe hypercholesterolemia of a similar degree in the two groups, and no differences in the aortic lesion area were detected. Thus, macrophage LDLR expression does not influence foam cell lesion formation in the setting of extreme LDL accumulation. To determine whether macrophage LDLR expression affects foam cell formation under conditions of moderate, non-LDL hyperlipidemia, we transplanted C57BL/6 mice with either LDLR(-/-) marrow (experimental group) or LDLR(+/+) marrow (controls). Cholesterol levels were not significantly different between the two groups at baseline or after 6 weeks on a butterfat diet, but were 40% higher in the experimental mice after 13 weeks, mostly due to accumulation of beta-very low density lipoprotein (beta-VLDL). Despite the increase in cholesterol levels, mice receiving LDLR(-/-) marrow developed 63% smaller lesions than controls, demonstrating that macrophage LDLR affects the rate of foam cell formation when the atherogenic stimulus is beta-VLDL. We conclude that the macrophage LDLR is responsible for a significant portion of lipid accumulation in foam cells under conditions of dietary stress.  相似文献   

4.
LDL receptor-deficient (LDLR(-/-)) mice exhibit mild hyperlipidemia on a chow diet but develop severe hyperlipidemia on a high fat diet. In this study, we investigated neointimal formation after removal of the endothelium when LDLR(-/-) mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 10 weeks of age, female mice underwent endothelial denudation of the left common carotid artery. Two weeks after injury, neointimal formation was barely detectable in the injured vessel when mice developed mild hyperlipidemia on the chow diet. In contrast, neointimal lesions were obvious when mice developed severe hyperlipidemia on the Western diet. Immunohistochemical and histological analyses demonstrated the presence of macrophage foam cells and smooth muscle cells in neointimal lesions. The injured artery also exhibited a significant increase in medial area on the Western diet. Plasma levels of MCP-1 and soluble VCAM-1 were significantly elevated by feeding of the Western diet. These data indicate that hyperlipidemia aggravates neointimal growth in LDLR(-/-) mice by promoting foam cell formation and inflammation.  相似文献   

5.
Differences in affinity of human apolipoprotein E (apoE) isoforms for the low density lipoprotein receptor (LDLR) are thought to result in the differences in lipid metabolism observed in humans with different APOE genotypes. Mice expressing three common human apoE isoforms, E2, E3, and E4, in place of endogenous mouse apoE were used to investigate the relative roles of apoE isoforms in LDLR- and non-LDLR-mediated very low density lipoprotein (VLDL) clearance. While both VLDL particles isolated from mice expressing apoE3 and apoE4 bound to mouse LDLR with affinity and Bmax similar to VLDL containing mouse apoE, VLDL with apoE2 bound with only half the Bmax. In the absence of the LDLR, all lines of mice expressing human apoE showed dramatic increases in VLDL cholesterol and triglycerides (TG) compared to LDLR knockout mice expressing mouse apoE. The mechanism of the hyperlipidemia in mice expressing human apoE isoforms is due to impairment of non-LDL-receptor-mediated VLDL clearance. This results in the severe atherosclerosis observed in mice expressing human apoE but lacking the LDLR, even when fed normal chow diet. Our data show that defects in LDLR independent pathway(s) are a potential factor that trigger hyperlipoproteinemia when the LDLR pathway is perturbed, as in E2/2 mice.  相似文献   

6.
Multiple studies suggest increased conversion of cholesterol to bile acids by cholesterol 7alpha-hydroxylase (CYP7A1) protects against dyslipidemia and atherosclerosis. CYP7A1 expression is repressed by the sequential activity of two nuclear hormone receptors, farnesoid X receptor (FXR) and small heterodimer partner (SHP). Here we demonstrate 129 strain SHP(-/-) mice are protected against hypercholesterolemia resulting from either a cholesterol/cholic acid (chol/CA) diet or from hypothyroidism. In a mixed 129-C57Bl/6 background, LDLR(-/-) and LDLR(-/-)SHP(-/-) mice had nearly identical elevations in hepatic cholesterol content and repression of cholesterol regulated genes when fed a Western diet. However, the LDLR(-/-)SHP(-/-) mice had greatly reduced elevations in serum VLDL and LDL cholesterol levels and triglyceride (TG) levels as compared with LDLR(-/-) mice. Additionally, the hepatic inflammation produced by the Western diet in the LDLR(-/-) mice was abolished in the LDLR(-/-)SHP(-/-) mice. CYP7A1 expression was induced 10-fold by the Western diet in the LDLR(-/-)SHP(-/-) mice but not in the LDLR(-/-) mice. Finally, hepatocyte-specific deletion of SHP expression was also protective against dyslipidemia induced by either a chol/CA diet or by hypothyroidism. While no antagonist ligands have yet been identified for SHP, these results suggest selective inhibition of hepatic SHP expression may provide protection against dyslipidemia.  相似文献   

7.
Obesity is increasing at an alarming rate, and its related disorders are placing a considerable strain on our healthcare system. Although they are not always coincident, obesity is often accompanied by hyperlipidemia. Both obesity and hyperlipidemia are independently associated with atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and insulin resistance (IR). Thus, we sought to determine the relative contributions of obesity and hyperlipidemia to these associated pathologies. Obese agouti (A(y)/a) mice and their littermate controls (a/a) were placed on an LDL receptor (LDLR)(-/-) background. At 4 mo of age, mice were either maintained on chow diet (CD) or placed on Western diet (WD) for 12 wk. These genetic and dietary manipulations yielded four experimental groups: 1) lean, a/a;LDLR(-/-)CD; 2) genetic-induced obesity (GIO), A(y)/a;LDLR(-/-)CD; 3) diet-induced obesity (DIO), a/a;LDLR(-/-)WD; and 4) genetic- plus diet-induced obesity (GIO/DIO), A(y)/a;LDLR(-/-)WD. Lipoprotein profiles revealed increased VLDL and LDL particles in WD-fed mice compared with CD-fed controls. The hyperlipidemia present in this mouse model was the result of both increased hepatic triglyceride production and delayed lipoprotein clearance from the plasma. Both WD-fed groups exhibited similar levels of atherosclerotic lesion area, with increased obesity in the GIO/DIO group having no impact on atherogenesis. However, the severe obesity in the GIO/DIO group did aggravate NAFLD and IR. These findings suggest that, although obesity and hyperlipidemia exert individual pathological effects, the combination of the two has the potential to exert an additive effect on NAFLD and IR but not atherosclerosis in this mouse model.  相似文献   

8.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

9.
Glucocorticoids, which are well established to regulate body fat mass distribution, adipocyte lipolysis, hepatic gluconeogenesis, and hepatocyte VLDL secretion, are speculated to play a role in the pathology of metabolic syndrome. Recent focus has been on the activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which is capable of regenerating, and thus amplifying, glucocorticoids in key metabolic tissues such as liver and adipose tissue. To determine the effects of global 11beta-HSD1 inhibition on metabolic syndrome risk factors, we subcutaneously injected "Western"-type diet-fed hyperlipidemic mice displaying moderate or severe obesity [LDL receptor (LDLR)-deficient (LDLR(-/-)) mice and mice derived from heterozygous agouti (A(y)/a) and homozygous LDLR(-/-) breeding pairs (A(y)/a;LDLR(-/-) mice)] with the nonselective 11beta-HSD inhibitor carbenoxolone for 4 wk. Body composition throughout the study, end-point fasting plasma, and extent of hepatic steatosis and atherosclerosis were assessed. This route of treatment led to detection of high levels of carbenoxolone in liver and fat and resulted in decreased weight gain due to reduced body fat mass in both mouse models. However, only A(y)/a;LDLR(-/-) mice showed an effect of 11beta-HSD1 inhibition on fasting insulin and plasma lipids, coincident with a reduction in VLDL due to mildly increased VLDL clearance and dramatically decreased hepatic triglyceride production. A(y)/a;LDLR(-/-) mice also showed a greater effect of the drug on reducing atherosclerotic lesion formation. These findings indicate that subcutaneous injection of an 11beta-HSD1 inhibitor allows for the targeting of the enzyme in not only liver, but also adipose tissue, and attenuates many metabolic syndrome risk factors, with more pronounced effects in cases of severe obesity and hyperlipidemia.  相似文献   

10.
Hyperlipidemia is a major risk factor for developing atherosclerosis in humans, and epidemiological studies have correlated specific lipoprotein levels with cardiovascular disease risk. Murine models of atherosclerosis rely on the induction of hyperlipidemia for vascular lesions to form, but the pathogenic contributions attributed to different lipoprotein populations are not well defined. To address this issue, we analyzed over 300 LDL receptor (LDLR) deficient mice that have been fed a high-fat diet and for which a full lipoprotein profile and aortic root atherosclerosis values were assessed. Overall, aortic root atherosclerosis is best predicted by plasma VLDL cholesterol levels with less predictive value derived from either LDL or HDL cholesterol. Triglyceride levels are more atherogenic in female mice, especially immune competent females, and depletion of the adaptive immune system leads to a global reduction in plasma lipid levels and aortic root lesion size yet does not appear to alter the atherogenic potential of individual lipoprotein subspecies. In contrast, HDL-cholesterol is a better predictor of aortic root atherosclerosis in apoE-deficient mice. In summary, this large scale analysis of high-fat diet fed LDLR deficient mice highlight the relationship between different plasma lipid components, especially VLDL-cholesterol, and aortic root atherosclerosis.  相似文献   

11.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

12.
The synthesis of apoE by adipocytes has profound effects on adipose tissue lipid flux and gene expression. Using adipose tissue transplantation from wild-type (WT) to apoE knockout (EKO) mice, we show that adipose tissue also contributes to circulating apoE. Different from circulating apoE produced by bone marrow transplantation (BMT), however, adipose tissue-derived apoE does not correct hyperlipidemia or suppress atherosclerosis. ApoE secreted by macrophages has a more acidic isoform distribution, and it increases binding of reconstituted VLDL particles to hepatocytes and fibroblasts more effectively than apoE secreted by adipocytes. The incremental binding can be entirely accounted for by binding to the LDL receptor. After BMT into EKO hosts, plasma cholesterol and macrophage-derived apoE are largely within IDL/LDL- and HDL-sized particles. After adipose tissue transplantation, most cholesterol and adipocyte apoE remain in VLDL. After BMT, circulating apoE no longer demonstrates predominance of acidic isoforms compared with that circulating after fat transplantation. In conclusion, fat transplantation provides circulating apoE levels similar to those provided by bone marrow transplantation, but it does not suppress hyperlipidemia or atherosclerosis. A potential mechanism contributing to this difference is differential binding to cell surface lipoprotein receptors.  相似文献   

13.
Recruitment of inflammatory cells in the arterial wall by vascular adhesion molecules plays a key role in development of atherosclerosis. Apolipoprotein E-deficient (apoE(-/-)) mice have spontaneous hyperlipidemia and develop all phases of atherosclerotic lesions. We sought to examine plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and sP-selectin in two apoE(-/-) strains C57BL/6 (B6) and BALB/c with early or advanced lesions. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. On either diet, BALB/c.apoE(-/-) mice developed much smaller atherosclerotic lesions and displayed significantly lower levels of sVCAM-1 and sP-selectin than B6.apoE(-/-) mice. The Western diet significantly elevated sVCAM-1 levels in both strains and sP-selectin levels in B6.apoE(-/-) mice. BALB/c.apoE(-/-) mice exhibited 2-fold higher HDL cholesterol levels on the chow diet and 15-fold higher HDL levels on the Western diet than B6.apoE(-/-) mice, although the two strains had comparable levels of total cholesterol and triglyceride. Thus, increased atherosclerosis is accompanied by increases in circulating VCAM-1 and P-selectin levels in the two apoE(-/-) mouse strains, and the high HDL level may protect against atherosclerosis by inhibiting the expression of adhesion molecules in BALB/c.apoE(-/-) mice.  相似文献   

14.
We have reported that obese leptin-deficient mice (ob/ob) lacking the low-density lipoprotein receptor (LDLR(-/-)) develop severe hyperlipidemia and spontaneous atherosclerosis. In the present study, we show that obese leptin receptor-deficient mice (db/db) lacking LDLR have a similar phenotype, even in the presence of elevated plasma leptin levels. We investigated the mechanism for the hyperlipidemia in obese LDLR(-/-) mice by comparing lipoprotein production and clearance rates in C57BL/6, ob/ob, LDLR(-/-) and ob/ob;LDLR(-/-) mice. Hepatic triglyceride production rates were equally increased ( approximately 1.4-fold, P<.05) in both LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob mice. LDL clearance was decreased ( approximately 1.3- fold, P<.01) to a similar extent in LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob controls. While VLDL clearance was delayed in LDLR(-/-) compared to C57BL/6 and ob/ob mice (2-fold, P<.001), this delay was exaggerated in ob/ob;LDLR(-/-) mice (3.8-fold, P<001). The VLDL clearance defects were due to decreased hepatic uptake compared to C57BL/6 (54% and 26% for LDLR(-/-) and ob/ob;LDLR(-/-), respectively, P<.001). When VLDL was collected from C57BL/6, ob/ob, LDLR(-/-), and ob/ob;LDLR(-/-) donors and injected into LDLR(-/-) recipient mice, counts remaining in the liver were 1.4-fold elevated in mice receiving LDLR(-/-) VLDL and 2-fold increased in mice receiving ob/ob;LDLR(-/-) VLDL compared to controls receiving C57BL/6 VLDL (P<.01). Thus, the increase in plasma lipoproteins in ob/ob;LDLR(-/-) mice is caused by delayed VLDL clearance. This appears to be due to defects in both the liver and the lipoproteins themselves in these obese mice.  相似文献   

15.
This study aimed at measuring the influence of a low salt diet on the development of experimental atherosclerosis in moderately hyperlipidemic mice. Experiments were carried out on LDL receptor (LDLR) knockout (KO) mice, or apolipoprotein E (apoE) KO mice on a low sodium chloride diet (LSD) as compared with a normal salt diet (NSD). On LSD, the rise of the plasma concentrations of TG and nonesterified fatty acid (NEFA) was, respectively, 19% and 34% in LDLR KO mice, and 21% and 35% in apoE KO mice, and that of plasma cholesterol was limited to the LDLR KO group alone (15%). Probably due to the apoE KO severe hypercholesterolemia, the arterial inner-wall fat storage was not influenced by the diet salt content and was far more abundant in the apoE KO than in the LDLR KO mice. However, in the less severe hypercholesterolemia of the LDLR KO mice, lipid deposits on the LSD were greater than on the NSD. Arterial fat storage correlated with NEFA concentrations in the LDLR KO mice alone (n = 14, P = 0.0065). Thus, dietary sodium chloride restriction enhances aortic wall lipid storage in moderately hyperlipidemic mice.  相似文献   

16.
17.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

18.
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp +/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.  相似文献   

19.
Plasma leptin is often elevated in obese individuals, and previous studies have suggested leptin as a factor that links obesity and atherosclerosis. Because macrophages play a key role in atherogenesis and are responsive to leptin, we hypothesized that leptin increases aortic root lesion formation, in part, through macrophage leptin receptor (LepR). Three different bone marrow transplantation studies were conducted in which bone marrow, with or without LepR, was transplanted into lethally irradiated 1) LDL receptor-deficient (LDLR(-/-)) mice with moderate hyperleptinemia due to Western diet (WD) feeding, 2) LDLR(-/-) mice with WD feeding plus pharmacologically induced hyperleptinemia (daily injection of 125 microg leptin), or 3) obese, hyperleptinemic, LepR-deficient LDLR(-/-) (LepR(db/db);LDLR(-/-)) mice. Minor differences in plasma parameters such as cholesterol, triglycerides, and insulin were observed in some groups; however, a consistent trend for the role of LepR on these parameters was not detected. In each of the studies, macrophage LepR expression did not have an effect on aortic root atherosclerotic lesion formation. These results suggest that nonhematopoietic cells may have a more significant role than macrophages in leptin-mediated effects on aortic root lesion formation.  相似文献   

20.
Apolipoprotein E is a multifunctional protein synthesized by hepatocytes and macrophages. Plasma apoE is largely liver-derived and known to regulate lipoprotein metabolism. Macrophage-derived apoE has been shown to reduce the progression of atherosclerosis in mice. We tested the hypothesis that liver-derived apoE could directly induce regression of pre-existing advanced atherosclerotic lesions without reducing plasma cholesterol levels. Aged low density lipoprotein (LDL) receptor-deficient (LDLR(-/-)) mice were fed a western-type diet for 14 weeks to induce advanced atherosclerotic lesions. One group of mice was sacrificed for evaluation of atherosclerosis at base line, and two other groups were injected with a second generation adenoviruses encoding human apoE3 or a control empty virus. Hepatic apoE gene transfer increased plasma apoE levels by 4-fold at 1 week, and apoE levels remained at least 2-fold higher than controls at 6 weeks. There were no significant changes in plasma total cholesterol levels or lipoprotein composition induced by expression of apoE. The liver-derived human apoE gained access to and was retained in arterial wall. Compared with base-line mice, the control group demonstrated progression of atherosclerosis; in contrast, hepatic apoE expression induced highly significant regression of advanced atherosclerotic lesions. Regression of lesions was accompanied by the loss of macrophage-derived foam cells and a trend toward increase in extracellular matrix of lesions. As an index of in vivo oxidant stress, we quantitated the isoprostane iPF(2 alpha)-VI and found that expression of apoE markedly reduced urinary, LDL-associated, and arterial wall iPF(2 alpha)-VI levels. In summary, these results demonstrate that liver-derived apoE directly induced regression of advanced atherosclerosis and has anti-oxidant properties in vivo that may contribute to its anti-atherogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号