首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vir-type IV secretion system of Agrobacterium is assembled from 12 proteins encoded by the virB operon and virD4. VirB1 is one of the least-studied proteins encoded by the virB operon. Its N terminus is a lytic transglycosylase. The C-terminal third of the protein, VirB1*, is cleaved from VirB1 and secreted to the outside of the bacterial cell, suggesting an additional function. We show that both nopaline and octopine strains produce abundant amounts of VirB1* and perform detailed studies on nopaline VirB1*. Both domains are required for wild-type virulence. We show here that the nopaline type VirB1* is essential for the formation of the T pilus, a subassembly of the vir-T4SS composed of processed and cyclized VirB2 (major subunit) and VirB5 (minor subunit). A nopaline virB1 deletion strain does not produce T pili. Complementation with full-length VirB1 or C-terminal VirB1*, but not the N-terminal lytic transglycosylase domain, restores T pili containing VirB2 and VirB5. T-pilus preparations also contain extracellular VirB1*. Protein-protein interactions between VirB1* and VirB2 and VirB5 were detected in the yeast two-hybrid assay. We propose that VirB1 is a bifunctional protein required for virT4SS assembly. The N-terminal lytic transglycosylase domain provides localized lysis of the peptidoglycan cell wall to allow insertion of the T4SS. The C-terminal VirB1* promotes T-pilus assembly through protein-protein interactions with T-pilus subunits.  相似文献   

2.
The symbiosis island of Mesorhizobium loti strain R7A contains genes with strong similarity to the structural vir genes (virB1-11; virD4) of Agrobacterium tumefaciens that encode the type IV secretion system (T4SS) required for T-DNA transfer to plants. In contrast, M. loti strain MAFF303099 lacks these genes but contains genes not present in strain R7A that encode a type III secretion system (T3SS). Here we show by hybridization analysis that most M. loti strains contain the VirB/D4 T4SS and not the T3SS. Strikingly, strain R7A vir gene mutants formed large nodules containing bacteroids on Leucaena leucocephala in contrast to the wild-type strain that formed only uninfected tumour-like structures. A rhcJ T3SS mutant of strain MAFF303099 also nodulated L. leucocephala, unlike the wild type. On Lotus corniculatus, the vir mutants were delayed in nodulation and were less competitive compared with the wild type. Two strain R7A genes, msi059 and msi061, were identified through their mutant phenotypes as possibly encoding translocated effector proteins. Both Msi059 and Msi061 were translocated through the A. tumefaciens VirB/D4 system into Saccharomyces cerevisiae and Arabidopsis thaliana, as shown using the Cre recombinase Reporter Assay for Translocation (CRAfT). Taken together, these results suggest that the VirB/D4 T4SS of M. loti R7A plays an analogous symbiotic role to that of T3SS found in other rhizobia. The heterologous translocation of rhizobial proteins by the Agrobacterium VirB/D4 T4SS is the first demonstration that rhizobial effector proteins are translocated into plant cells and confirms functional conservation between the M. loti and A. tumefaciens T4SS.  相似文献   

3.
4.
Abstract The osa gene of IncW plasmid pSa encodes a 21-kDa protein that completely abolishes the oncogenic activity encoded by virulence genes in Agrobacterium tumefaciens. osa is the last gene of a four-gene operon in pSa, the expression of which appears to be highly regulated since the Osa protein is absent when either pSa or the osa operon is present in the Agrobacterium cell. When the osa gene alone or together with upstream genes within the operon are expressed under the control of a constitutive promoter, Osa protein is produced, enabling us to determine its subcellular location. Immunoblot analyses located Osa protein at the inner membrane of both A. tumefaciens and Escherichia coli . Because Osa inhibits oncogenicity of A. tumefaciens , and because alterations of the products of the virB and virD genes affect oncogenicity, studies were conducted to determine if there are changes in their specific association with the membranes in the presence Osa. Immunoblot analyses of VirB2, VirB3, VirB4, VirB9, and VirD4 in the presence and absence of Osa revealed no differences between the two treatments in these Vir protein associations with the membranes. These results indicate that both virB and virD gene products are produced in the presence of Osa; that they appear unaffected in their association with the membranes; and that Osa is associated with the inner membrane, where VirB2, VirB4, and VirD4 proteins are also located.  相似文献   

5.
Bartonellae are pathogenic bacteria uniquely adapted to cause intraerythrocytic infection in their human or animal reservoir host(s). Experimental infection of rats by Bartonella tribocorum revealed the initial colonization of a yet unidentified niche outside of circulating blood. This primary niche periodically seeds bacteria into the bloodstream, resulting in the invasion and persistent intracellular colonisation of erythrocytes. Here, this animal model was used for a genetic analysis of the virB locus (virB2-11) and the downstream located virD4 gene, which together encode a putative type IV secretion system (T4SS). A generic method for marker-less gene replacement allowed the generation of non-polar in-frame deletions in either virB4 or virD4. Both mutants were unable to cause bacteraemia, whereas complementation with the full-length genes in trans completely restored infectivity. Segregation analysis of the complementation plasmids further denoted that VirB4 and VirD4 are required at an early stage of the infection course before the onset of intraerythrocytic bacteraemia. This analysis of defined mutants in an in vivo model identified components of the VirB/VirD4 T4SS as the first bona fide pathogenicity factors in Bartonella.  相似文献   

6.
The T pilus, primarily composed of cyclic T-pilin subunits, is essential for the transmission of the Ti-plasmid T-DNA from Agrobacterium tumefaciens to plant cells. Although the virB2 gene of the 11-gene virB operon was previously demonstrated to encode the full-length propilin, and other genes of this operon have been implicated as members of a conserved transmembrane transport apparatus, the role of each virB gene in T-pilin synthesis and transport and T-pilus biogenesis remained undefined. In the present study, each virB gene was examined and was found to be unessential for T-pilin biosynthesis, except virB2, but was determined to be essential for the export of the T-pilin subunits and for T-pilus formation. We also find that the genes of the virD operon are neither involved in T-pilin export nor T-pilus formation. Critical analysis of three different virD4 mutants also showed that they are not involved in T-pilus biogenesis irrespective of the A. tumefaciens strains used. With respect to the environmental effects on T-pilus biogenesis, we find that T pili are produced both on agar and in liquid culture and are produced at one end of the A. tumefaciens rod-shaped cell in a polar manner. We also report a novel phenomenon whereby flagellum production is shut down under conditions which turn on T-pilus formation. These conditions are the usual induction with acetosyringone at pH 5.5 of Ti-plasmid vir genes. A search of the vir genes involved in controlling this biphasic reaction in induced A. tumefaciens cells revealed that virA on the Ti plasmid is involved and that neither virB nor virD genes are needed for this reaction. The biphasic reaction therefore appears to be mediated through a two-component signal transducing system likely involving an unidentified vir gene in A. tumefaciens.  相似文献   

7.
8.
9.
The recently sequenced genome of the bacterial plant pathogen Xanthomonas axonopodis pv. citri contains two virB gene clusters, one on the chromosome and one on a 64-kb plasmid, each of which codes for a previously uncharacterized type IV secretion system (T4SS). Here we used a yeast two-hybrid assay to identify protein-protein interactions in these two systems. Our results revealed interactions between known T4SS components as well as previously uncharacterized interactions involving hypothetical proteins coded by open reading frames in the two X. axonopodis pv. citri virB loci. Our results indicate that both loci may code for previously unidentified VirB7 proteins, which we show interact with either VirB6 or VirB9 or with a hypothetical protein coded by the same locus. Furthermore, a set of previously uncharacterized Xanthomonas proteins have been found to interact with VirD4, whose gene is adjacent to the chromosomal virB locus. The gene for one member of this family is found within the chromosomal virB locus. All these uncharacterized proteins possess a conserved 120-amino-acid domain in their C termini and may represent a family of cofactors or substrates of the Xanthomonas T4SS.  相似文献   

10.
The virB gene products of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid have been proposed to mediate T-DNA transport through the bacterial cell wall into plant cells. Previous genetic analysis of the approximately 9.5-kilobase-pair virB operon has been limited to transposon insertion mutagenesis. Due to the polarity of the transposon insertions, only the last gene in the operon, virB11, is known to provide an essential virulence function. We have now begun to assess the contribution of the other virB genes to virulence. First, several previously isolated Tn3-HoHo1 insertions in the 3' end of the virB operon were precisely mapped by nucleotide sequence analysis. Protein extracts from A. tumefaciens strains harboring these insertions on the Ti plasmid were subjected to immunostaining analysis with VirB4-, VirB10-, and VirB11-specific antisera to determine the effect of the insertion on virB gene expression. In this manner, avirulent mutants containing polar insertions in the virB9 and virB10 genes were identified. To carry out a complementation analysis with these virB mutants, expression vectors were constructed that allow cloned genes to be expressed from the virB promoter in A. tumefaciens. These plasmids were used to express combinations of the virB9, virB10, and virB11 genes in trans in the virB insertion mutants, thereby creating strains lacking only one of these three virB gene products. Virulence assays on Kalanchoe daigremontiana demonstrated that in addition to virB11, the virB9 and virB10 genes are required for tumorigenicity.  相似文献   

11.
12.
Cytoplasmically inherited symbiotic Wolbachia bacteria are known to induce a diversity of phenotypes on their numerous arthropod hosts including cytoplasmic incompatibility, male-killing, thelytokous parthenogenesis, and feminization. In the wasp Asobara tabida (Braconidae), in which all individuals harbor three genotypic Wolbachia strains (wAtab1, wAtab2 and wAtab3), the presence of Wolbachia is required for insect oogenesis. To elucidate the phenotype of each Wolbachia strain on host reproduction, especially on oogenesis, we established lines of A. tabida harboring different combinations of these three bacterial strains. We found that wAtab3 is essential for wasp oogenesis, whereas the two other strains, wAtabl and wAtab2, seem incapable to act on this function. Furthermore, interline crosses showed that strains wAtab1 and wAtab2 induce partial (about 78%) cytoplasmic incompatibility of the female mortality type. These results support the idea that bacterial genotype is a major factor determining the phenotype induced by Wolbachia on A. tabida hosts. We discuss the implications of these findings for current hypotheses regarding the evolutionary mechanisms by which females of A. tabida have become dependent on Wolbachia for oogenesis.  相似文献   

13.
Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58.   总被引:44,自引:25,他引:19       下载免费PDF全文
The virulence (vir) region of pTiC58 was screened for promoter activities by using gene fusions to a promoterless lux operon in the broad-host-range vector pUCD615. Active vir fragments contained the strongly acetosyringone-inducible promoters of virB, virC, virD, and virE and the weakly inducible promoters of virA and virG. Identical induction patterns were obtained with freshly sliced carrot disks, suggesting that an inducer is released after plant tissue is wounded. Optimal conditions for vir gene induction were pH 5.7 for 50 microM acetosyringone or sinapic acid. The induction of virB and virE by acetosyringone was strictly dependent on intact virA and virG loci. An increase in the copy number of virG resulted in a proportional, acetosyringone-independent increase in vir gene expression, and a further increase occurred only if an inducing compound and virA were present.  相似文献   

14.
The Type IV Secretion System (T4SS) is an efficient pathway with which bacteria can mediate the transfer of DNA and/or proteins to eukaryotic cells. In Wolbachia pipientis, a maternally inherited obligate endosymbiont of arthropods and nematodes, two operons of vir genes, virB3-B6 and virB8-D4, encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation system in Wolbachia, thereby suggesting the importance for the T4SS in Wolbachia biology and survival inside host cells.  相似文献   

15.
The Agrobacterium tumefaciens virB7 gene product is a lipoprotein whose function is required for the transmission of oncogenic T-DNA to susceptible plant cells. Three lines of study provided evidence that VirB7 interacts with and stabilizes other VirB proteins during the assembly of the putative T-complex transport apparatus. First, a precise deletion of virB7 from the pTiA6NC plasmid of wild-type strain A348 was correlated with significant reductions in the steady-state levels of several VirB proteins, including VirB4, VirB9, VirB10, and VirB11; trans expression of virB7 in the delta virB7 mutant partially restored the levels of these proteins, and trans coexpression of virB7 and virB8 fully restored the levels of these proteins to wild-type levels. Second, modulation of VirB7 levels resulted in corresponding changes in the levels of other VirB proteins in the following cell types: (i) a delta virB7 mutant expressing virB7 and virB8 from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Plac and other virB genes from acetosyringone (AS)-inducible PvirB; (ii) a delta virB operon mutant expressing virB7 and virB8 from Plac and virB9, virB10, and virB11 from PvirB; and (iii) a delta virB operon mutant expressing virB7 from IPTG-inducible Pklac and virB9 from an AS-inducible PvirB. Third, the synthesis of a VirB7::PhoA fusion protein in strain A348 was correlated with a significant reduction in the steady-state levels of VirB4, VirB5, and VirB7 through VirB11; these cells also exhibited a severely attenuated virulence phenotype, indicating that synthesis of the fusion protein perturbs the assembly of VirB proteins into a stabilized protein complex required for T-complex transport. Extracts of AS-induced cells electrophoresed under nonreducing conditions possessed undetectable levels of the 32-kDa VirB9 and 4.5-kDa VirB7 monomers and instead possessed a 36-kDa complex that cross-reacted with both VirB7 and VirB9 antisera and accumulated as a function of virB7 expression. Our results are consistent with a model in which VirB7 stabilizes VirB9 by formation of a covalent intermolecular cross-link; in turn, the VirB7-VirB9 heterodimer promotes the assembly of a functional T-complex transport machinery.  相似文献   

16.
The virulence regulon of the Agrobacterium tumefaciens TiC58 plasmid is composed of six operons, virA, virB, virG, virC, virD and virE, which direct the transfer of T-DNA into plant cells. The 9.5 kbp virB operon is the largest of these operons and its entire nucleotide sequence was determined and found to contain eleven open reading frames (ORFs). Gene fusions of each VirB ORF to T7 phi 10 were made and overexpressed in Escherichia coli to confirm that they encode proteins of predicted size. Hydrophobic analysis of these peptide sequences revealed nine proteins that contain hydrophobic spanning regions including signal-peptide-like sequences. These data suggest that the majority of VirB proteins may associate with bacterial cell membranes, while the two additional proteins possess a potential ATP-binding site. Strong homologies in amino acid sequences were observed between nopaline- and octopine-type plasmids. Specific differences in amino acid sequence encoded by VirB ORFs of nopaline and octopine Ti plasmid and a functional role of the gene products are discussed.  相似文献   

17.
The virD operon of the resident Ti plasmid of Agrobacterium tumefaciens contains loci involved in T-DNA processing and undefined virulence functions. Nucleotide sequence of the entire virD operon of pTiC58 revealed similarities to the virD operon of the root-inducing plasmid pRiA4b and to that of the octopine-type plasmid pTiA6NC. However, comparative sequence data show that virD of pTiC58 is more akin to that of the pRiA4b than to that of the pTiA6NC. T7f10::virD gene fusions were used to generate polypeptides that confirm the presence of four open reading frames virD1, virD2, virD3, and virD4 within virD which have a coding capacity for proteins of 16.1, 49.5, 72.6, and 73.5 kDa, respectively. virD3 therefore encodes a polypeptide 3.4 times larger (72.6 versus 21.3 kDa) than that encoded by virD3 of octopine Ti plasmids. Non-polar virD4 mutants could not be complemented by a distant homologue, TraG protein of plasmid RP4. An independently regulated fifth ORF (orf5) is located immediately downstream of 3′ end of virD4 and encodes a polypeptide of 97.4 kDa. The expression of orf5 is dependent on its own promoter and is independent of acetosyringone induction in A. tumefaciens. Recently, it has been shown that virD3 of octopine Ri or Ti plasmids is not required for virulence. In this report, we confirm and extend these findings on a nopaline Ti plasmid by using several virD non-polar mutants that were tested for virulence. virD3 and orf5 non-polar mutants showed no effect on tumorigenicity on 14 different plant species, while virD4 mutants lost their tumorigenicity completely on all these test plants. These data suggest that virD3 and orfS are not essential for virulence whereas virD4 is absolutely required on a wide range of host plants.  相似文献   

18.
Expression of Agrobacterium tumefaciens virulence (vir) genes is dependent on the presence of a conserved 'vir box' sequence in their 5' nontranscribed regions. The location and number of these sequences vary considerably in different vir genes. Site-directed mutagenesis was used to identify the functional vir box(es) of virB, virC and virD. For virB expression both vir box B1 and B2 are required but only the vir box B1 is absolutely essential. Of the five vir boxes of virC and virD two are required for virC expression while only one vir box is required for virD expression. To investigate the minimum sequences necessary for vir gene induction a deletion derivative of virE that lacks the vir box region was used. This mutant is not induced by acetosyringone. The inducibility of this promoter was restored when a synthetic deoxyoligonucleotide dGTTTCAATTGAAAC was introduced at a location analogous to that of the wild type vir box sequence. Mutational analysis indicate that the functional vir box sequence is 14 residues in length, contains a dyad symmetry and has the consensus sequence d ryTncAaTTGnAaY [corrected] (r = purine, y = pyrimidine).  相似文献   

19.
20.
The type IV secretion system is an important virulence factor in several host cell-associated pathogens, as it delivers various bacterial macromolecules to target eukaryotic cells. Genes homologous to several virB genes and virD4 of Agrobacterium tumefaciens are found in an intravacuolar pathogen Ehrlichia chaffeensis, the tick-borne causative agent of human monocytic ehrlichiosis. In particular, despite its small genome size, E. chaffeensis has four tandem virB6 paralogs (virB6-1, -2, -3, and -4) that are 3- to 10-fold larger than A. tumefaciens virB6. The present study for the first time illustrates the relevance of the larger quadruple VirB6 paralogs by demonstrating the protein expression and interaction in E. chaffeensis. All four virB6 paralogs were cotranscribed in THP-1 human leukemia and ISE6 tick cell cultures. The four VirB6 proteins and VirB9 were expressed by E. chaffeensis in THP-1 cells, and amounts of these five proteins were similar in isolated E. chaffeensis-containing vacuoles and vacuole-free E. chaffeensis. In addition, an 80-kDa fragment of VirB6-2 was detected, which was strikingly more prevalent in E. chaffeensis-containing vacuoles than in vacuole-free E. chaffeensis. Coimmunoprecipitation analysis revealed VirB9 interaction with VirB6-1 and VirB6-2; VirB6-4 interaction with VirB6-1, VirB6-2, and VirB6-3; and VirB6-2 80-kDa fragment interaction with VirB6-3 and VirB6-4. The interaction of VirB9 and VirB6-2 was confirmed by far-Western blotting. The results suggest that E. chaffeensis VirB9, the quadruple VirB6 proteins, and the VirB6-2 80-kDa fragment form a unique molecular subassembly to cooperate in type IV secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号