共查询到20条相似文献,搜索用时 0 毫秒
1.
Arnab Bandyopadhyay Soumi Biswas Alok Kumar Maity Suman K. Banik 《Systems and synthetic biology》2014,8(1):3-20
The DevRS two component system of Mycobacterium tuberculosis is responsible for its dormancy in host and becomes operative under hypoxic condition. It is experimentally known that phosphorylated DevR controls the expression of several downstream genes in a complex manner. In the present work we propose a theoretical model to show role of binding sites in DevR mediated gene expression. Individual and collective role of binding sites in regulating DevR mediated gene expression has been shown via modeling. Objective of the present work is twofold. First, to describe qualitatively the temporal dynamics of wild type genes and their known mutants. Based on these results we propose that DevR controlled gene expression follows a specific pattern which is efficient in describing other DevR mediated gene expression. Second, to analyze behavior of the system from information theoretical point of view. Using the tools of information theory we have calculated molecular efficiency of the system and have shown that it is close to the maximum limit of isothermal efficiency. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function. In response regulators, interaction of phosphorylated aspartic acid at the active site with the conserved threonine is believed to be crucial for phosphorylation-mediated conformational change. DevR contains all the conserved residues, but the structure of its receiver domain in the unphosphorylated protein is strikingly different, and key threonine (T82), tyrosine (Y101), and lysine (K104) residues are placed uncharacteristically far from the D54 phosphorylation site. In view of the atypical location of T82 in DevR, the present study aimed to examine the importance of this residue in the activation mechanism. Mycobacterium tuberculosis expressing a DevR T82A mutant protein is defective in autoregulation and supports hypoxic induction of the DevR regulon only very weakly. These defects are ascribed to slow and partial phosphorylation and the failure of T82A mutant protein to bind cooperatively with DNA. Our results indicate that the T82 residue is crucial in implementing conformational changes in DevR that are essential for cooperative binding and for subsequent gene activation. We propose that the function of the T82 residue in the activation mechanism of DevR is conserved in spite of the unusual architecture of its receiver domain. 相似文献
12.
13.
14.
15.
Larissa M. Podust Hugues Ouellet Jens P. von Kries Paul R. Ortiz de Montellano 《The Journal of biological chemistry》2009,284(37):25211-25219
The Mycobacterium tuberculosis P450 enzymes are of interest for their pharmacological development potential, as evidenced by their susceptibility to inhibition by antifungal azole drugs that normally target sterol 14α-demethylase (CYP51). Although antifungal azoles show promise, direct screening of compounds against M. tuberculosis P450 enzymes may identify novel, more potent, and selective inhibitory scaffolds. Here we report that CYP130 from M. tuberculosis has a natural propensity to bind primary arylamines with particular chemical architectures. These compounds were identified via a high throughput screen of CYP130 with a library of synthetic organic molecules. As revealed by subsequent x-ray structure analysis, selected compounds bind in the active site by Fe-coordination and hydrogen bonding of the arylamine group to the carbonyl oxygen of Gly243. As evidenced by the binding of structural analogs, the primary arylamine group is indispensable, but synergism due to hydrophobic contacts between the rest of the molecule and protein amino acid residues is responsible for a binding affinity comparable with that of the antifungal azole drugs. The topology of the CYP130 active site favors angular coordination of the arylamine group over the orthogonal coordination of azoles. Upon substitution of Gly243 by an alanine, the binding mode of azoles and some arylamines reverted from type II to type I because of hydrophobic and steric interactions with the alanine side chain. We suggest a role for the conserved Ala(Gly)243-Gly244 motif in the I-helix in modulating both the binding affinity of the axial water ligand and the ligand selectivity of cytochrome P450 enzymes.CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 (P450, CYP)2 enzymes and is one of three (CYP51, CYP121, and CYP130) that have been studied as individually expressed proteins at the structural level. Evidence has accumulated for the importance of M. tuberculosis P450 enzymes in virulence (CYP132) (1), host infection (CYP125) (2), and pathogen viability (CYP128, CYP121) (3, 4), although neither their exact biological functions nor any of the endogenous substrates upon which these enzymes operate have yet been established. However, it has recently been shown in vitro that CYP121 catalyzes a C–C coupling reaction between two tyrosine groups (5). CYP130 is absent from the genome of Mycobacterium bovis, suggesting that it might play specific role(s) in the infection of the human host and thus constitute a potential therapeutic target.The potential of M. tuberculosis P450 enzymes for pharmacologic development was initially suggested by their susceptibility to inhibition by antifungal azole drugs such as fluconazole, econazole, and clotrimazole. These drugs block sterol 14α-demethylase CYP51 in fungi (6), tightly bind to M. tuberculosis P450 proteins (7, 8), and display inhibitory potential against latent and multidrug-resistant forms of tuberculosis both in vitro and in tuberculosis-infected mice (9–14).The substantial differences between fungal CYP51 and the potential P450 targets in microbial pathogens, including M. tuberculosis, suggest that the direct screening of compounds against M. tuberculosis CYP enzymes could identify novel inhibitory scaffolds that are more potent and selective than antifungal drugs. Structurally characterized screening targets are advantageous, as the already defined purification and crystallization protocols can be applied to obtain co-crystal structures and to elucidate the binding modes of screening hits. This approach has been successfully applied to CYP51, resulting in identification of novel inhibitory scaffolds for CYP51 therapeutic targets (15, 16).Toward this goal, the property of P450 enzymes to shift the ferric heme iron Soret band on ligand binding (17) provides an experimental platform for high throughput screening of compound libraries to select chemotypes with high binding affinities for the target. Expulsion of the heme iron axial water ligand from the Fe-coordination sphere by the incoming substrate followed by transition of the ferric heme from the low-spin hexacoordinated to the high-spin pentacoordinated state characterize type I spectral shifts and are a prerequisite for P450 catalytic activity. Replacement of a weak axial ligand, the water molecule, with a stronger one possessing a nitrogen-containing aliphatic or aromatic group coordinating to the heme iron characterizes type II spectral shifts.To find new high affinity ligands of CYP130, a commercial library of 20,000 small organic molecules comprising a large selection of molecular scaffolds was screened against the enzyme. In contrast to the results with CYP51, no type I binding hits were identified. Screening produced about a dozen structurally diverse type II hits that were unexpectedly devoid of the usual aromatic nitrogen atoms readily accessible for axial coordination of the heme iron, suggesting an alternative coordination mode. High resolution x-ray structure analysis determined that two compounds coordinated to the heme iron via a primary arylamine group, providing the first structural evidence on P450-heterocyclic arylamine interactions. 相似文献
16.
17.
Beef heart mitochondrial ATPase (F1) contained 2 mol of ADP and 1 mol of ATP/mol of enzyme, which resisted removal by Sephadex chromatography with dilute buffers or repeated precipitation with ammonium sulfate. The native enzyme also contained two apparently equivalent binding sites, which participated in readily reversible binding of adenyl-5'-ylimidodiphosphate (AMP-P(NH)P), with a Kd of 1.3 mum. The failure of AMP-P(NH)P to compete effectively with ADP for binding sites on F1 may be related to the failure of the analog to inhibit oxidative phosphorylation. Virtually complete removal of all adenine nucleotides from F1 occurred when the enzyme was chromatographed on columns of Sephadex equilibrated with 50% glycerol. No loss in ATPase activity was observed following removal of nucleotides from the enzyme, which was then capable of binding more than 4 mol of ADP and almost 5 mol of AMP-P(NH)P/mol of protein. Subsequent chromatography on columns of Sephadex equilibrated with dilute buffers containing Mg2+ removed only 1.5 mol of ADP and no AMP-P(NH)P from the enzyme. Reconstitution of F1 with ADP or with almost 5 mol of AMP-P(NH)P resulted in preparations that exhibited an undiminished capacity to restore oxidative phosphorylation in F1-deficient submitochondrial particles. 相似文献
18.
19.
20.
REST-VP16 activates multiple neuronal differentiation genes in human NT2 cells 总被引:4,自引:0,他引:4 下载免费PDF全文
Immaneni A Lawinger P Zhao Z Lu W Rastelli L Morris JH Majumder S 《Nucleic acids research》2000,28(17):3403-3410