首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium capable of using soluble and insoluble forms of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors during anaerobic respiration. To assess the structural association of two outer membrane-associated c-type decaheme cytochromes (i.e., OmcA [SO1779] and MtrC [SO1778]) and their ability to reduce soluble Fe(III)-nitrilotriacetic acid (NTA), we expressed these proteins with a C-terminal tag in wild-type S. oneidensis and a mutant deficient in these genes (i.e., Delta omcA mtrC). Endogenous MtrC copurified with tagged OmcA in wild-type Shewanella, suggesting a direct association. To further evaluate their possible interaction, both proteins were purified to near homogeneity following the independent expression of OmcA and MtrC in the Delta omcA mtrC mutant. Each purified cytochrome was confirmed to contain 10 hemes and exhibited Fe(III)-NTA reductase activity. To measure binding, MtrC was labeled with the multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (1,2-ethanedithiol)2, which specifically associates with a tetracysteine motif engineered at the C terminus of MtrC. Upon titration with OmcA, there was a marked increase in fluorescence polarization indicating the formation of a high-affinity protein complex (Kd < 500 nM) between MtrC and OmcA whose binding was sensitive to changes in ionic strength. Following association, the OmcA-MtrC complex was observed to have enhanced Fe(III)-NTA reductase specific activity relative to either protein alone, demonstrating that OmcA and MtrC can interact directly with each other to form a stable complex that is consistent with their role in the electron transport pathway of S. oneidensis MR-1.  相似文献   

2.
To characterize the roles of cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 in Cr(VI) reduction, the effects of deleting the mtrC and/or omcA gene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion of mtrC decreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion of omcA or both mtrC and omcA lowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion of mtrC and omcA diminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparent k(cat) values of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s(-1) and K(m) values of 34.1 ± 4.5 and 41.3 ± 7.9 μM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used by S. oneidensis MR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase.  相似文献   

3.
In an effort to improve the understanding of electron transfer mechanisms at the microbe–mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins demonstrated that both cytochromes undergo rapid electron exchange with FH in vitro with MtrC displaying faster transfer rates than OmcA. Immunomicroscopy with cytochrome-specific antibodies revealed that MtrC co-localizes with iron solids on the cell surface while OmcA exhibits a more diffuse distribution over the cell surface. After 3-day incubation of MR-1 with FH, pronounced reductive transformation mineral products were visible by electron microscopy. Upon further incubation, the predominant phases identified were ferrous phosphates including vivianite [Fe3(PO4)2·8H2O] and a switzerite-like phase [Mn3,Fe3(PO4)2·7H2O] that were heavily colonized by MR-1 cells with surface-exposed outer-membrane cytochromes. In the absence of both MtrC and OmcA, the cells ability to reduce FH was significantly hindered and no mineral transformation products were detected. Collectively, these results highlight the importance of the outer-membrane cytochromes in the reductive transformation of FH and support a role for direct electron transfer from the OMCs at the cell surface to the mineral.  相似文献   

4.
The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ΔomcA mutant but not those of a ΔmtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of the mineral surface from cell respiration associated with achievement of high surface cell densities.  相似文献   

5.
Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface.  相似文献   

6.
Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 μM−1 s−1 for the reaction between MtrC and the Fe-EDTA complex to 0.012 μM−1 s−1 for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature.  相似文献   

7.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

8.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

9.
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.  相似文献   

10.
Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic Gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC (MtrC*) which is dependent on the presence of a functional type 2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC* undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 h(-1) that is insensitive to O(2) concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 h(-1)) that are consistent with the inherent complexity associated with correct heme insertion and acylation of MtrC that occurs in the periplasm prior to its targeting to the outer membrane. These latter results suggest that MtrC protein trafficking to the outer membrane and its subsequent degradation are tightly regulated, which is consistent with cellular processing pathways that target MtrC to extracellular structures and their possible role in promoting electron transfer from Shewanella to extracellular acceptors.  相似文献   

11.
Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel, and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.  相似文献   

12.
Pertechnetate, 99Tc(VII)O4, is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O2(s). In other microorganisms, Tc(VII)O4 reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H2-driven reduction of Tc(VII)O4[presumably through a direct coupling of H2 oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c -type cytochromes MtrC and OmcA or the proteins required for the maturation of c -type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO2·nH2O(s) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O4, confirming the capacity for direct electron transfer from these OMCs to TcO4. c -Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate.  相似文献   

13.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 are lipoproteins, and to assess cell surface exposure of the cytochromes by radioiodination. METHODS AND RESULTS: In anaerobic MR-1 cells grown with (3)H-palmitoleic acid, both OmcA and OmcB were radiolabelled. The identities of these bands were confirmed by the absence of each radiolabelled band in the respective mutants lacking individual OM cytochromes. Radioiodination of cell surface proteins in anaerobic cells resulted in (125)I-labelled OmcA. The identity of this band was confirmed by its absence in an OmcA-minus mutant. A ubiquitous radioiodinated band that migrates similarly to OmcB precluded the ability to determine the potential cell surface exposure of OmcB by this method. CONCLUSIONS: Both OmcA and OmcB are lipoproteins, and OmcA is cell surface exposed. SIGNIFICANCE: The lipoprotein modification of these OM cytochromes could be important for their localization or incorporation into the OM. The cell surface exposure of OmcA could allow it to directly transfer electrons to extracellular electron acceptors (e.g. manganese oxides) and is consistent with its in vivo role.  相似文献   

14.
Silver sulfide nanoparticles stable in aqueous solutions were obtained in presence of the cells of the bacterium Shewanella oneidensis MR-1 in aqueous solution containing an equimolar mixture of AgNO3 and Na2S2O3. Proteins absorbed on the surface of Ag2S nanoparticles were identified for the first time by MALDITOF/TOF. Among these proteins, multiheme cytochromes MtrC and OmcA, as well as the MtrB membrane porin, which forms a complex on the outer cell membrane, were detected. It was shown that an insoluble precipitate consisting of agglomerated Ag2S nanoparticles with a wide size distribution was formed in the absence of the cells. The role of the detected proteins in the mechanism of the formation and stabilization of the Ag2S nanoparticles in the studied system is discussed.  相似文献   

15.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracellular UO(2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO(2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2) nanoparticles. In the environment, such association of UO(2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2) or transport in soils and sediments.  相似文献   

16.
Antibody recognition force microscopy showed that OmcA and MtrC are expressed on the exterior surface of living Shewanella oneidensis MR-1 cells when Fe(III), including solid-phase hematite (Fe2O3), was the terminal electron acceptor. OmcA was localized to the interface between the cell and mineral. MtrC displayed a more uniform distribution across the cell surface. Both cytochromes were associated with an extracellular polymeric substance.Shewanella oneidensis MR-1 is a dissimilatory metal-reducing bacterium that is well known for its ability to use a variety of anaerobic terminal electron acceptors (TEAs), including solid-phase iron oxide minerals, such as goethite and hematite (8, 10). Previous studies suggest that S. oneidensis MR-1 uses outer membrane cytochromes OmcA and MtrC to catalyze the terminal reduction of Fe(III) through direct contact with the extracellular iron oxide mineral (2, 8, 10, 15, 16, 20, 21, 23). However, it has yet to be shown whether OmcA or MtrC is actually targeted to the external surface of live S. oneidensis MR-1 cells when Fe(III) serves as the TEA.In the present study, we used atomic force microscopy (AFM) to probe the surface of live S. oneidensis MR-1 cells, using AFM tips that were functionalized with cytochrome-specific polyclonal antibodies (i.e., anti-OmcA or anti-MtrC). This technique, termed antibody recognition force microscopy (Ig-RFM), detects binding events that occur between antibodies (e.g., anti-OmcA) on an AFM tip and antigens (e.g., OmcA) that are exposed on a cell surface. While this is a relatively new technique, Ig-RFM has been used to map the nanoscale spatial location of single molecules in complex biological structures under physiological conditions (5, 9, 11, 13).Anti-MtrC or anti-OmcA molecules were covalently coupled to silicon nitride (Si3N4) cantilevers (Veeco or Olympus) via a flexible, heterofunctional polyethylene glycol (PEG) linker molecule. The PEG linker consists of an NHS (N-hydroxysuccinimide) group at one end and an aldehyde group at the other end (i.e., NHS-PEG-aldehyde). AFM tips were functionalized with amine groups, using ethanolamine (6, 7). The active NHS ester of the NHS-PEG-aldehyde linker molecule was then used to form a covalent linkage between PEG-aldehyde and the amine groups on the AFM tips (6, 7). Next, anti-MtrC or anti-OmcA molecules were covalently tethered to these tips via the linker molecule''s aldehyde group. This was accomplished by incubating the tips with antibody (0.2 mg/ml) and NaCNBH3 as described previously (7). The cantilevers were purchased from Veeco and had spring constant values between 0.06 and 0.07 N/m, as determined by the thermal method of Hutter and Bechhoefer (12).Prior to conducting the Ig-RFM experiments, the specificity of each polyclonal antibody (i.e., anti-OmcA and anti-MtrC) for OmcA or MtrC was verified by Western blot analysis as described previously (24, 28). Proteins were resolved by both denaturing and nondenaturing polyacrylamide gel electrophoresis (PAGE). Briefly, 2.5 μg of purified OmcA or MtrC (23) was resolved by sodium dodecyl sulfate-PAGE or native PAGE, transferred to a polyvinylidene difluoride membrane, incubated with either anti-OmcA or anti-MtrC, and then visualized using the Amersham ECL Plus Western blotting detection kit. Anti-OmcA bound exclusively to OmcA, anti-MtrC bound exclusively to MtrC, and neither antibody showed cross-reactivity with the other cytochrome. Antibody specificities of anti-OmcA and anti-MtrC were also validated by immunoblot analysis of S. oneidensis whole-cell lysate (28).To determine if MtrC or OmcA was expressed on the external surface of live bacteria when Fe(III) served as the TEA, Ig-RFM was conducted on wild-type versus ΔomcA ΔmtrC double mutant cells. For these experiments, bacteria were cultivated anaerobically with Fe(III), in the form of Fe(III) chelated to nitrilotriacetic acid (NTA), serving as the TEA (19, 23). Growth conditions have been described elsewhere (3, 15) and were based on previous studies (3, 15, 16, 18) that suggest that S. oneidensis MR-1 targets OmcA and MtrC to the cell surface when Fe(III) serves as the TEA.An Asylum Research MFP-3D-BIO AFM or a Digital Instruments Bioscope AFM (16, 17) was used for these experiments. The z-piezoelectric scanners were calibrated as described previously (17). Cells were deposited on a hydrophobic glass coverslip and immersed in imaging buffer (i.e., phosphate-buffered saline [pH 7.4]). The hydrophobic glass coverslips were made as described previously (17) using a self-assembling silane compound called octadecyltrichlorosilane (OTS; Sigma-Aldrich). S. oneidensis MR-1 cells readily adsorbed onto OTS glass coverslips and remained attached to the coverslips during the entire experiment. No lateral cell movement was observed during the experiment, consistent with previous studies that used OTS glass to immobilize bacteria (15, 17, 18, 27).The AFM tip was brought into contact with the surface of a bacterium, and the antibody-functionalized tip was repeatedly brought into and out of contact with the sample, “fishing” for a binding reaction with cytochrome molecules that were exposed on the external cell surface. Binding events were observed upon separating anti-OmcA- or anti-MtrC-functionalized tips from wild-type S. oneidensis MR-1 cells (Fig. (Fig.1).1). For the wild-type cells, we observed both nonspecific and specific interactions (Fig. (Fig.11).Open in a separate windowFIG. 1.Retraction force curves for anti-MtrC-functionalized tips (A) and anti-OmcA-functionalized tips (B) that are being pulled away from the surface of living ΔomcA ΔmtrC double mutant (gray dotted line) or wild-type (solid black line) S. oneidensis MR-1. These bacteria were adsorbed onto OTS glass coverslips. (C) Retraction curves exhibiting nonspecific binding, specific binding, or no binding between the AFM tip and the cell surface.The distinction between “specific” and “nonspecific” adhesion is made by observing the change in slope of the force curve during the retraction process (26). During specific binding (Fig. (Fig.1C),1C), the cantilever is initially relaxed as it is pulled away from the sample. Upon further retraction, the ligand-receptor complex becomes stretched and unravels, resulting in a nonlinear force profile as noted in references 26 and 16. On the other hand, nonspecific adhesion (Fig. (Fig.1C)1C) maintains the same slope during the retraction process because only the cantilever flexes (26).Figure Figure22 summarizes the frequency or probability of observing a binding event for both anti-OmcA and anti-MtrC tips. Each bar in Fig. Fig.22 represents one experiment in which 500 to 1,000 force curves were collected between one AFM tip and two to four live bacterial cells. This figure does not make a distinction between specific and nonspecific binding. It simply shows the frequency of observing an attractive interaction as the antibody-functionalized tip was pulled away from the surface of S. oneidensis MR-1. Binding events occurred with roughly the same frequency when wild-type S. oneidensis MR-1 cells were probed with anti-MtrC-functionalized tips as when they were probed with anti-OmcA-functionalized tips (Fig. (Fig.22).Open in a separate windowFIG. 2.Histograms showing the frequency of observing a binding event for anti-MtrC-functionalized (blue) or anti-OmcA-functionalized (red) AFM tips on live wild-type S. oneidensis MR-1 (solid bars) or ΔomcA ΔmtrC double mutant (diagonally hatched bars) cells. The downward arrows designate injection of free antibody into the imaging buffer. The solid gray bars correspond to results obtained with unbaited AFM tips.A number of control experiments were performed to verify the detection of OmcA and MtrC on the surface of wild-type S. oneidensis MR-1. First, 0.1 μM of free anti-OmcA (or anti-MtrC) was added to the imaging fluid to block binding between the antibody-functionalized AFM tip and surface-exposed cytochromes (11, 16). This decreased the adhesion that was observed between the antibody-functionalized tip and the cell surface (Fig. (Fig.22).Second, we performed force measurements on ΔomcA ΔmtrC double mutant S. oneidensis MR-1 cells. This mutant is deficient in both OmcA and MtrC (19, 23, 24) but produces other proteins native to the outer surface of S. oneidensis MR-1. The resulting force spectra showed a noticeable reduction in binding events for the ΔomcA ΔmtrC double mutant cells (Fig. (Fig.2).2). The binding events that were observed for the double mutant were only nonspecific in nature (Fig. (Fig.1).1). This indicates that the antibodies on the tip do not participate in specific interactions with other proteins on the surface of S. oneidensis MR-1 cells.As a final control experiment, force measurements were conducted on wild-type S. oneidensis MR-1 cells, using Si3N4 tips conjugated with the PEG linker but not functionalized with polyclonal antibody (unbaited tips). Like the results with the double mutant, the unbaited tips were largely unreactive with the surface of the bacteria (Fig. (Fig.2).2). Those binding events that were observed were nonspecific in nature. Taken together, these results demonstrate that the antibody-coated tips have a specific reactivity with OmcA and MtrC molecules. Furthermore, these force measurements show that MtrC and OmcA are present on the external cell surface when Fe(III) serves as the TEA.To map the distribution of cytochromes on living cells, Ig-RFM was conducted on living S. oneidensis MR-1 cells that were growing on a hematite (α-Fe2O3) thin film. The conditions for these experiments were as follows. A hematite film was grown on a 10-mm by 10-mm by 1-mm oxide substrate via oxygen plasma-assisted molecular beam epitaxy (14, 16). The cells were grown anaerobically to mid-log phase with Fe(III)-NTA serving as the TEA. Cells were deposited onto the hematite thin film along with anaerobic growth medium that lacked Fe(III)-NTA. The cells were allowed to attach to the hematite surface (without drying) overnight in an anaerobic chamber. The following day, the liquid was carefully removed and immediately replaced with fresh anaerobic solution (pH 7.4). Ig-RFM was performed on the cells by raster scanning an antibody-functionalized AFM tip across the sample surface, thereby creating an affinity map (1). Force curves were collected for a 32-by-32 array. The raw pixilated force-volume data were deconvoluted using a regularized filter algorithm. The total time to acquire a complete image was approximately 20 min.As noted above, attractive interactions between an antibody tip and cell resulted in relatively short-range, nonspecific and longer-range, specific adhesive forces (Fig. (Fig.1C).1C). To distinguish between these two interactions, we integrated each force curve beginning at >20 nm and ending at the full retraction of the piezoelectric motor (∼1,800 nm). This integration procedure quantifies the work of binding, measured in joules, between the antibody tip and a particular position on the sample. While this integration procedure does not totally exclude nonspecific binding, it does select for those events associated primarily with specific antibody-antigen binding. Figure Figure33 is the antibody-cytochrome recognition images for MtrC and OmcA. The corresponding height (or topography) images of the bacterial cells are also shown in Fig. Fig.33.Open in a separate windowFIG. 3.Ig-RFM of live S. oneidensis MR-1 cells deposited on a hematite (α-Fe2O3) thin film. Height image (A) and corresponding Ig-RFM image (B) for a bare unfunctionalized Si3N4 tip. Height and corresponding Ig-RFM image for a tip functionalized with anti-MtrC (C and D) or anti-OmcA (E and F). Each panel contains a thin white oval showing the approximate location of the bacterium on the hematite surface. A color-coded scale bar is shown on the right (height in micrometers [μm], and the work required to separate the tip from the surface in attojoules [aJ]).OmcA molecules were concentrated at the boundary between the bacterial cell and hematite surface (Fig. 3E and F). MtrC molecules were also detected at the edge of a cell (Fig. 3C and D). Some MtrC, unlike OmcA, was observed on the cell surface distal from the point of contact with the mineral (Fig. 3C and D). Both OmcA and MtrC were also present in an extracellular polymeric substance (EPS) on the hematite surface (Fig. 3D and F), which is consistent with previous results showing MtrC and OmcA in an EPS produced by cells under anaerobic conditions (19, 24). This discovery is interesting in light of the research by Rosso et al. (22) and Bose et al. (4), who found that Shewanella can implement a nonlocal electron transfer strategy to reduce the surface of hematite at locations distant from the point of cell attachment. Rosso et al. (22) proposed that the bacteria utilize unknown extracellular factors to access the most energetically favorable regions of the Fe(III) oxide surface. The Ig-AFM results (Fig. (Fig.3)3) suggest the possibility that MtrC and/or OmcA are the “unknown extracellular factors” that are synthesized by Shewanella to reduce crystalline Fe(III) oxides at points distal from the cell. Additional experiments showing reductive dissolution features coinciding with the extracellular location of MtrC and/or OmcA would need to be performed to test this hypothesis.It is important to note that these affinity maps were collected on only a few cells because it so challenging to produce large numbers of quality images. Future work should be conducted on a population of cells. Until this time, these affinity maps can be used to provide a crude, lowest-order estimate of the number of cytochromes on the outer surface of living S. oneidensis MR-1. For example, there were 236 force curves collected on the bacterium shown in Fig. Fig.3D.3D. Thirty-eight of these curves exhibited a distinct, sawtooth-shaped, antibody-antigen binding event. In other words, MtrC molecules were detected in one out of every six force curves (16%) that were collected on the cell surface.This probability can be compared to other independent studies that estimated the density and size of MtrC and OmcA molecules from S. oneidensis MR-1. Lower et al. (16) estimated that S. oneidensis has 4 × 1015 to 7 × 1015 cytochromes per square meter by comparing AFM measurements for whole cells to force curves on purified MtrC and OmcA molecules. Wigginton et al. (25) used scanning tunneling microscopy to determine that the diameter of an individual cytochrome is 5 to 8 nm. These values can be used to create a simple, geometric, close-packing arrangement of MtrC or OmcA molecules on a surface. Using this approach, cytochromes could occupy 8 to 34% of the cell surface.This estimate is consistent with the observed number of putative MtrC molecules shown in Fig. Fig.3D.3D. Therefore, it appears that these affinity maps can be used as a lowest-order estimate for the number of cytochromes on S. oneidensis MR-1 even though we do not know a priori the exact configuration of the antibody tip (e.g., the concentration of antibody on the tip, the exact shape of the tip, the binding epitopes within the antibody).In summary, the data presented here show that S. oneidensis MR-1 localizes OmcA and MtrC molecules to the exterior cell surface, including an EPS, when Fe(III) is the TEA. Here, the cytochromes presumably serve as terminal reductases that catalyze the reduction of Fe(III) through direct contact with the extracellular iron-oxide mineral.  相似文献   

17.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments.  相似文献   

18.
Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments.  相似文献   

19.
AIM: To determine if the outer membrane (OM) cytochromes of the metal-reducing bacterium Shewanella oneidensis MR-1 are exposed on the cell surface. METHODS AND RESULTS: MR-1 cells were incubated with proteinase K or buffer and the resulting degradation of the OM cytochromes was examined by Western blotting. The periplasmic fumarate reductase (control) was not degraded. The OM cytochromes OmcA and OmcB were significantly degraded by proteinase K (71 and 31%, respectively). Immunofluorescence confirmed a prominent cell surface exposure of OmcA and a partial exposure of OmcB and the noncytochrome OM protein MtrB. CONCLUSIONS: The cytochromes OmcA and OmcB are exposed on the outer face of the OM. SIGNIFICANCE AND IMPACT OF THE STUDY: The cell surface exposure of these cytochromes could allow them to directly contact extracellular insoluble electron acceptors (e.g. manganese oxides) and is consistent with their in vivo role.  相似文献   

20.
Vibrio parahaemolyticus is a leading causative agent of seafood‐borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号