首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the isolation of a 3,276 base pair cDNA for the bovine natriuretic peptide receptor-B (NPR-B). Expression of this clone in Cos-P cells demonstrates that it encodes an agonist-dependent guanylyl cyclase. Porcine CNP stimulates the activity of this receptor up to 200-fold with an ED50 of 12±2 nM, whereas brain natriuretic peptide C-type natriuretic peptide (CNP) and atrial natriuretic factor (ANF) are less efficacious. In addition, ligand binding studies indicate that this receptor exhibits the pharmacology appropriate for the bovine NPR-B. CNP binds to Cos-P cell membranes expressing this clone with a Kd of 13±1 pM, and natriuretic peptides compete for [125I]-CNP binding with a rank order of pCNP>pBNP>rANF. Thus, the expressed receptor-guanylyl cyclase exhibits the expected pharmacological profile for ligand binding and cyclase activation of the bovine NPR-B receptor.Abbreviations BSA bovine serum albumin - dNTP deoxynucleotide triphosphate - SDS sodium dodecyl sulfate - DEAE-dextran diethylaminoethyl-dextran - EDTA ethylenediamine tetraacetic acid - Tris Tris(hydroxymethyl)aminomethane - DMSO dimethyl sulfoxide - RP-HPLC reverse phase-high performance liquid chromatography - AMV avian myeloblastosis virus - Arg arginine - Lys lysine  相似文献   

2.
UV cross-linking studies of the natriuretic pepti de receptor- B (NPR-B )using radio labeled C-type natriuretic peptide (CNP) indicate that onlyfully glycosylated receptors are capable of binding ligand. We thereforeused site-directed mutagenesis to determine which potential glycosylationsites are occupied by carbohydrate, and the relevant mutants werecharacterized in order to understand the function of carbohydrate additionat those sites. Our results suggest that five of seven potential N-linkedglycosylation sites are modified. In addition, mutation of asparagine 24results in a loss of ~90% of receptor activity. This mutant isexpressed at levels comparable to the wild-type receptor, and its activityis not significantly different from that of wild-type NPR-B in terms of EC50for CNP. Ligand binding studies on this mutant further show that althoughthere is no change in affinity for ligand, ~90% of receptor bindingis lost. These data suggest that many of the mutant receptors are simply notproperly folded. Our results indicate that glycosylation of asparagine 24 ofNPR-B receptors may be critical for the formation of a competent ligandbinding domain.  相似文献   

3.
The C type natriuretic peptide (CNP) is a peptide hormone stimulating vasorelaxation and inhibiting cell proliferation. CNP activates the type B natriuretic peptide receptor (NPR-B), known as the guanylate cyclase B membrane enzyme, which results in the cGMP release. To study functional properties of NPR-B, its gene fragments were expressed in methylotrophic yeastsPichia pastoris. Conditions were found providing for secretion of functionally active recombinant proteins NPR-Bs and NPR-Bl into the cultural medium in a yield of 25 mg/l culture. Their specific activity was 0.97 and 0.93 μmol cGMP min−1 mg−1 protein, respectively. It was shown that NPR-B belongs to the family of Ser/Thr protein kinases and can be autophosphorylated at the serine residues.  相似文献   

4.
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.  相似文献   

5.
Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = SnM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.  相似文献   

6.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

7.
Natriuretic peptide receptors mediate the physiological response of natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.  相似文献   

8.
C-type natriuretic peptide (CNP) was recently found in the myocardium, but possible insights into differences between atrium and ventricle production are so far lacking. Our aim was to evaluate, in an experimental model of pacing-induced heart failure (HF), plasma and tissue levels of CNP and mRNA expression of the peptide and of its specific receptor, NPR-B. Cardiac tissue was collected from male adult minipigs without (control, n=5) and with pacing-induced HF (n=5). Blood samples were collected at baseline and after pacing (10 min, 1, 2, 3 weeks). CNP in plasma and in cardiac extracts was determined by a radioimmunoassay, while the expression of mRNA by real time PCR. Compared to control, plasma CNP was increased after 1 week of pacing stress (36.9+/-10.4 pg/ml vs.16.7+/-1.1, p=0.013, mean+/-S.E.M.). As to myocardial extract, at baseline, CNP was found in all cardiac chambers and its content was 10-fold higher in atria than in ventricles (RA: 13.7+/-1.9 pg/mg protein; LA: 8.7+/-3.8; RV: 1.07+/-0.33; LV: 0.93+/-0.17). At 3 weeks of pacing, myocardial levels of CNP in left ventricle were higher than in controls (15.8+/-9.9 pg/mg protein vs. 0.9+/-0.17, p=0.01). CNP gene expression was observed in controls and at 3 weeks of pacing. NPR-B gene expression was found in all cardiac regions analyzed, and a down-regulation was observed in ventricles after HF. The co-localization of the CNP system and NPR-B suggests a possible role of CNP in HF and may prompt novel therapeutical strategies.  相似文献   

9.
Occurrence of a novel cardiac natriuretic peptide in rats   总被引:3,自引:0,他引:3  
We established a specific radioimmunoassay for the ring structure of "iso-ANP" and detected iso-ANP[23-46]-like immunoreactivity (-LI) in the rat atrium (2.76 +/- 0.5 micrograms/g) and ventricle (13.9 +/- 5.7 ng/g). High performance-gel permeation chromatography revealed that iso-ANP[23-46]-LI in the rat heart was composed of two components with molecular weights of 10K and 5K. In reverse phase-high performance liquid chromatography, the retention times of these components were clearly different from that of synthetic iso-ANP. The 5K peptide was demonstrated to be present in the perfusate from isolated rat hearts and possessed binding ability to ANP receptors. This natriuretic peptide was, however, not detectable in other tissues including the brain. We conclude that the novel cardiac natriuretic peptide distinct from iso-ANP and ANP occurs in the rat heart and is secreted from the heart.  相似文献   

10.
Activation of many single-transmembrane receptors requires ligand-induced receptor oligomerization. We have examined the oligomerization of the atrial natriuretic peptide receptor, NPR-A, using epitope-tagged receptor in a co-immunoprecipitation assay. Unlike other single-transmembrane receptors, NPR-A oligomerized in a ligand-independent fashion. Extracellular receptor sequences were both necessary and sufficient for oligomer formation. NPR-A was also able to oligomerize with the related natriuretic peptide receptor, NPR-B. A truncated NPR-A lacking most of the cytoplasmic domain blocked activation of the full-length receptor, presumably through formation of an inactive heteromer. These results indicate that oligomerization of this single-transmembrane receptor is important for the transduction of a conformational change across the plasma membrane but are not consistent with models in which natriuretic peptide receptor oligomerization serves merely to bring intracellular domains together.  相似文献   

11.
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP = 0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.  相似文献   

12.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.  相似文献   

13.
The presence of immunoreactive porcine brain natriuretic peptide in rat tissues was studied with a specific radioimmunoassay for porcine brain natriuretic peptide-26. The cross-reactivity of the antiserum used was less than 0.001% with rat atrial natriuretic peptide, rat brain natriuretic peptide-32 and rat brain natriuretic peptide-45. Immunoreactive porcine brain natriuretic peptide was detectable in various tissues of the rat, and high concentrations of immunoreactive porcine brain natriuretic peptide were found in the brain and cardiac atrium, with the highest level in the hypothalamus (159±30 fmol/gram wet tissue, mean±SEM, n=4). Reverse phase high performance liquid chromatography showed that the immunoreactive porcine brain natriuretic peptide of the whole brain and heart extracts eluted mainly at an identical position to synthetic porcine brain natriuretic peptide-26. These findings indicate that porcine brain natriuretic peptide-like substance, distinct from rat brain natriuretic peptide, is present in high concentrations in the rat brain and cardiac atrium.  相似文献   

14.
Natriuretic peptide receptor A (NPR-A) is an essential cardiovascular regulator that is stimulated by atrial natriuretic peptide and B-type natriuretic peptide, whereas natriuretic peptide receptor B (NPR-B) stimulates long bone growth in a C-type natriuretic peptide-dependent manner. Many reports indicate that ATP is essential for NPR-A and NPR-B activation. Current models suggest that natriuretic peptide binding to receptor extracellular domains causes ATP binding to intracellular kinase homology domains, which derepresses adjacent catalytic domains. Here, we report 100-fold activations of natriuretic peptide receptors in the absence of ATP. The addition of a nonhydrolyzable ATP analog had no effect at early time periods (measured in seconds) but increased cGMP production about 2-fold after longer incubations (measured in minutes), consistent with a stabilization, not activation, mechanism. These data indicate that ATP does not activate natriuretic peptide receptors as has been repeatedly reported. Instead, ATP increases activity primarily by maintaining proper receptor phosphorylation status but also serves a previously unappreciated enzyme stabilizing function.  相似文献   

15.
Few dehydrophenylalanine (deltaPhe) analogues (X-deltaPhe-Phe-Gly-X1, X = Ac-; Boc-; Z-; X1 = OMe; OH; ONH2) of virus replication inhibiting peptide (Z-D-Phe-Phe-Gly) were synthesized, and their solution conformations were investigated by 1H NMR, UV and circular dichroism (CD) spectroscopy. Homogeneity of these analogues was also assessed by reverse phase-high performance liquid chromatography (RP-HPLC) using water-acetonitrile gradients.  相似文献   

16.
C-type natriuretic peptide (CNP), a member of the family of natriuretic peptides, is synthesized and secreted from monocytes and macrophages that resulted to be a source of CNP at inflammatory sites. This suggests that special attention should be focused on the possible role of CNP in the immune system, in addition to its effects on the cardiovascular system. The aim of this study was to evaluate the possibility of measuring the mRNA expression of CNP and NPR-B, its specific receptor, in human whole blood samples of healthy (N; n=7) and heart failure (HF; n=7) subjects by Real-Time PCR (RT-PCR). Total RNA was extracted from leukocytes with QIAamp RNA Blood Kit and/or with PAXgene Blood RNA Kit. RT-PCR was performed and optimized for each primer. The experimental results were normalized with the three most stably expressed genes. CNP and NPR-B expression trend was similar in both fresh and frozen human whole blood. Significant higher levels of CNP and NPR-B mRNA expression were found in HF patients with respect to controls (CNP: N=1.23±0.33 vs. HF=6.54±2.09 p=0.027; NPR-B: N=0.85±0.23 vs. HF=5.31±1.98 p=0.04). A significant correlation between CNP and NPR-B (r=0.86, p<0.0001) was observed. Further studies are needed to clarify the pathophysiological properties of this peptide but the possibility to measure CNP and NPR-B mRNA expression in human leukocytes with a fast and easy procedure is a useful starting point for future investigation devoted to better understand the biomolecular processes associated to different diseases.  相似文献   

17.
18.
C-type natriuretic peptide (CNP), which was recently found to be a selective ligand for one of the two known natriuretic peptide receptor guanylyl cyclases (NPR-B), potently stimulates cGMP production in cultured rat vascular smooth muscle cells (VSMC) and exerts potent antiproliferative effects on the cells. To investigate the structural requirements of CNP for stimulation of cGMP accumulation via NPR-B, we prepared CNP analogs and tested them on cultured rat VSMC. Our results indicate that only the ring portion of CNP with a disulfide bond (CNP(6-22)) participates in stimulation of cGMP accumulation, especially the sequence Leu9-Lys10-Leu11 in the ring portion executes essential roles for both elevation of cGMP and selectivity of the ligand for NPR-B. We also found a good correlation between the activities of the CNP analogs for stimulation of cGMP accumulation and inhibition of DNA synthesis.  相似文献   

19.
The binding of atrial natriuretic peptide and C-type natriuretic peptide (CNP) to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and -B), respectively, stimulates increases in intracellular cGMP concentrations. The vasoactive peptides vasopressin, angiotensin II, and endothelin inhibit natriuretic peptide-dependent cGMP elevations by activating protein kinase C (PKC). Recently, we identified six in vivo phosphorylation sites for NPR-A and five sites for NPR-B and demonstrated that the phosphorylation of these sites is required for ligand-dependent receptor activation. Here, we show that phorbol 12-myristate 13-acetate, a direct activator of PKC, causes the dephosphorylation and desensitization of NPR-B. In contrast to the CNP-dependent desensitization process, which results in coordinate dephosphorylation of all five sites in the receptor, phorbol 12-myristate 13-acetate treatment causes the dephosphorylation of only one site, which we have identified as Ser(523). The conversion of this residue to alanine or glutamate did not reduce the amount of mature receptor protein as indicated by detergent-dependent guanylyl cyclase activities or Western blot analysis but completely blocked the ability of PKC to induce the dephosphorylation and desensitization of NPR-B. Thus, in contrast to previous reports suggesting that PKC directly phosphorylates and inhibits guanylyl cyclase-linked natriuretic peptide receptors, we show that PKC-dependent dephosphorylation of NPR-B at Ser(523) provides a possible molecular explanation for how pressor hormones inhibit CNP signaling.  相似文献   

20.
The differential distribution of natriuretic peptide receptor subtypes and their distinct properties were assessed in mammalian cellular models which were screened for their ability to produce cGMP upon stimulation by different natriuretic peptides. The ANF-R1A receptor subtype was distinguished by its selective activation by atrial natriuretic factor (ANF) while the ANF-R1C was characterized by preferential stimulation by C-type natriuretic peptide (CNP). AT-t20 pituitary cells, bovine adrenal chromaffin cells, and NIH-3T3 fibroblasts mainly express the ANF-R1C receptor subtype. Other cell lines such as PC12, RASM and GH3 express significant but varying amounts of both ANF-R1A and ANF-R1C subtypes. A10 and NIH cells which express high density of ANF-R2 receptor subtype, also demonstrate a higher sensitivity to CNP over ANF suggesting that they express significant amounts of ANF-R1C. Studies of the regulation by ATP of guanylyl cyclase activity indicate that both ANF-R1A and ANF-R1C subtypes are modulated in the same manner. In the presence of Mn2+, ATP inhibits the CNP-stimulated guanylyl cyclase activity while in the presence of Mg2+ adenine nucleotides potentiate the stimulation by CNP. In addition, we show that like the ANF-R1A, the ANF-R1C guanylyl cyclase activity can be regulated by phosphorylation since preincubation with TPA or FKL attenuates the subsequent stimulation by CNP in cultured cells. The results presented demonstrate that specific cell types express distinct natriuretic peptide receptor subtypes and also that the newly characterized ANF-R1C subtype is regulated by ATP and serine/threonine kinases in the same way as the ANF-R1A subtype.Abbreviation ANF atrial natriuretic factor - BNP brain natriuretic peptide - CNP C-type natriuretic peptide - ATP adenosine-5-triphosphate - IBMX 3-isobutyl-1-methylxanthine - TPA 12-O-tetradecanoyl-phorbol-13-acetate - FKL forskolin - PKC calcium-phospholipid-dependent protein kinase - PKA cAMP-dependent protein kinase - PKG cGMP-dependent protein kinase - C-ANF [Cys116]-ANF-(102-116)-NH2 - CC chromaffin cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号