首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid synthesis capacity of the insect Ceratitis capitata has been investigated in vitro from [1-14C]acetyl-CoA using homogenates at different stages of development. A maximum activity was observed after 5--6 days of larval development. But homogenates of the pharate adult insect did not show synthetic capacity of fatty acids. Fatty acid synthetase complex has been isolated from the particle-free supernatant fraction of homogenates from the 6-day C. capitata larvae. The enzyme complex was purified 182-fold with respect to the protein contained in the crude extract. The complex was homogeneous when analysed by gel filtration and by polyacrylamide-gel electrophoresis. The molecular weight was 5.2X10(5). The enzyme was dissociated into half-molecular subunits. Amino acid analysis, general properties, stability and kinetic constants (V and Km) for the substrates are reported. The fatty acid synthetase complex from the insect contains 42+/-1-SH residues and one phosphopatetheine moiety per 5.2X10(5). Activity was dependent on the presence of NADPH; FMN strongly inhibited the enzyme activity promoted by NADPH. The enzyme complex synthesized a range of fatty acid (10:0--18:0), palmitate being the predominant end product. The proportions of fatty acids synthesized varied with substrate concentrations. Fatty acids released from the complex were almost completely in the free form.  相似文献   

2.
The product of the LPP1 gene in Saccharomyces cerevisiae is a membrane-associated enzyme that catalyzes the Mg(2+)-independent dephosphorylation of phosphatidate (PA), diacylglycerol pyrophosphate (DGPP), and lysophosphatidate (LPA). The LPP1-encoded lipid phosphatase was overexpressed 681-fold in Sf-9 insect cells and used to examine the enzymological properties of the enzyme using PA, DGPP, and LPA as substrates. The optimum pH values for PA phosphatase, DGPP phosphatase, and LPA phosphatase activities were 7. 5, 7.0, and 7.0, respectively. Divalent cations (Mn(2+), Co(2+), and Ca(2+)), NaF, heavy metals, propranolol, phenylglyoxal, and N-ethylmaleimide inhibited the PA phosphatase, DGPP phosphatase, and LPA phosphatase activities of the enzyme. The inhibitory effects of N-ethylmaleimide and phenylglyoxal on the LPP1-encoded enzyme were novel properties when compared with other Mg(2+)-independent lipid phosphate phosphatases from S. cerevisiae and mammalian cells. The LPP1-encoded enzyme exhibited saturation kinetics with respect to the surface concentrations of PA (K(m)=0.05 mol%), DGPP (K(m)=0.07 mol%), and LPA (K(m)=0.08 mol%). Based on specificity constants (V(max)/K(m)LPA (1.3 units/mg/mol%). DGPP (K(i)=0.12 mol%) was a competitive inhibitor with respect to PA, and PA (K(i)=0.12 mol%) was a competitive inhibitor with respect to DGPP. This suggested that the binding sites for these substrates were the same. The enzymological properties of the LPP1-encoded enzyme differed significantly from those of the S. cerevisiae DPP1-encoded lipid phosphatase, a related enzyme that also utilizes PA, DGPP, and LPA as substrates.  相似文献   

3.
1. An enzyme system that catalyses the sulphation of p-nitrophenol, cholesterol, alpha-ecdysone, beta-sitosterol, dehydroepiandrosterone, oestrone and four other steroids of plant and insect origin was obtained from the soluble fraction of southern-armyworm gut tissues. 2. The enzyme system required ATP and inorganic sulphate, and activity was slightly enhanced in the presence of GSH. 3. The properties of this enzyme system with respect to pH, temperature, substrate and protein concentrations and various cofactors and reagents were studied. At -23 degrees C the enzyme preparation could be stored for 2 weeks without drastic loss of activity. At the end of storage for 1 month the loss of activity was approx. 21%. 4. The possible involvement of this enzyme system in insect endocrine control is discussed.  相似文献   

4.
It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.  相似文献   

5.
Inhibition by aurinetricarboxylic acid (ATA) of glucose-6-phosphate (G6P) dehydrogenase was "competitive" with respect to G6P and "mixed type" with respect to NADP+. Inhibited enzyme bound two molecules of ATA. Kinetic constants, Km, Ki at varying pH suggested possible binding of the inhibitor by the sulfhydryl of the enzyme; of the several enzymes tested only milk xanthine oxidase and G6P dehydrogenase from bovine adrenal was inhibited by ATA.  相似文献   

6.
The binding of inhibitors to α-chymotrypsin   总被引:6,自引:3,他引:3       下载免费PDF全文
1. The binding of three competitive inhibitors, N-acetyl-d-tryptophan, N-acetyl-l-tryptophan and N-acetyl-d-tryptophan amide, to alpha-chymotrypsin was studied over the pH range 2.20-9.65 by the technique of equilibrium dialysis. 2. Within the limits of the experimental method, the binding of the uncharged amide inhibitor is independent of pH over the range investigated. 3. The binding of each of the enantiomeric acids is dependent on the ionization of a group on the free enzyme, of apparent pK(a)7.3. 4. It is shown that the ionizing group results in the active site of the enzyme developing a net negative charge above pH7.3. 5. The enzyme groups responsible are tentatively identified, and the significance of the binding constants with respect to the enzymic catalysis is discussed.  相似文献   

7.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel-nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS-PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH(2)-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues -180 to -175, NH(2)-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH(2)-terminal sequence, LDXNQLY, corresponding to residues -73 to -67 of the proregion peptide and thus were generated by removal of 126 residues from the NH(2)-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37 degrees C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (k(cat)/K(m)) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM(-)1 s(-1), respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) High Five cells.  相似文献   

8.
The kinetic mechanism of S-adenosylhomocysteine hydrolase was investigated by stopped-flow spectrofluorometry at pH 7.0 and 25 degrees C. Pre-steady-state kinetic steps were identified with chemical steps proposed for the mechanism of this enzyme (Palmer, J.L., and Abeles, R.H. (1979) J. Biol. Chem. 254, 1217-1226). The steady-state kinetic constants for the hydrolysis or synthesis of S-adenosylhomocysteine were in good agreement with those values calculated from the pre-steady-state rate constants. The equilibrium constant for dehydration of 3'-ketoadenosine to 3'-keto-4',5'-dehydroadenosine on the enzyme was 3. The analogous equilibrium constant for addition of L-homocysteine to S-3'-keto-4',5'-dehydroadenosylhomocysteine on the enzyme was 0.3. The elimination of H2O from adenosine in solution had an equilibrium constant of 1.4 (aH2O = 1). Thus, the equilibrium constants for these elimination reactions on the enzyme were probably not perturbed significantly from those in solution. The equilibrium constant for the reduction of enzyme-bound NAD+ by adenosine was 8, and the analogous constant for the reduction of the enzyme by S-adenosylhomocysteine was 4. The equilibrium constant for the reduction of NAD+ by a secondary alcohol in solution was 5 x 10(-5) at pH 7.0. Consequently, the reduction of enzyme-bound NAD+ by adenosine was 10(5)-fold more favorable than the reduction of free NAD+. The magnitude of the first-order rate constants for the interconversion of enzyme-bound intermediates varied over a relatively small range (3-80 s-1). Similarly, the magnitude of the equilibrium constants among enzyme-bound intermediates varied over a narrow range (0.3-10). These results were consistent with the overall reversibility of the reaction.  相似文献   

9.
Bovine brain adenosine deaminase cytoplasmatic form was purified about 450 fold by salt fractionation, column chromatography on DEAE-cellulose, octyl-sepharose 4B and affinity chromatography on CH-sepharose 4B 9-(p-aminobenzyl)adenine. The purified enzyme was homogeneous on disc gel electrophoresis; the enzyme had a molecular mass of about 65 kDa with an isoelectric point at pH 4.87. The Km values for adenosine and 2'-deoxyadenosine were 4 x 10(-5) and 5.2 x 10(-5) M, respectively. The enzyme showed a great stability to temperature with a half life of 15 hours at 53 degrees C significantly different compared to that known for other mammalian forms of this enzyme. Aza and deaza analogs of adenosine and erythro-9-(2-hydroxy-3-nonyl) adenine were good inhibitors of the bovine brain enzyme with little difference with respect to those reported for the adenosine deaminases purified from other sources. Kinetic constants for the association and dissociation of coformycin and 2'-deoxycoformycin with the bovine brain adenosine deaminase are reported.  相似文献   

10.
The pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii is rapidly inactivated by low concentrations of pyridoxal 5'-phosphate (PLP). The inactivation is first order with respect to PLP and the rate increases linearly with PLP concentrations suggesting that over the concentration range used no significant E-PLP complex accumulates during inactivation. The rate of inactivation decreases at high and low pH and this is discussed in terms of the mechanism of Schiff base formation. The presence of any reactants decreases the rate of inactivation to 0 at infinite concentration. This protection against inactivation has been used to obtain the pH dependence of the dissociation constants of all enzyme-reactant binary complexes. Reduction of the PLP-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 6-phosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphate probably directly coordinated to these phosphates.  相似文献   

11.
STUDIES ON ACETYLCHOLINESTERASE OF RAT BRAIN SYNAPTOSOMAL PLASMA MEMBRANES   总被引:3,自引:1,他引:2  
Abstract— A fluorimetric assay has been used to examine some kinetic properties of AChE from synaptosomal plasma membranes prepared from rat brain. The AChE bound to the plasma membranes was compared to that solubilized with Triton X-100 and found to be essentially the same with respect to Michaelis constant and inhibitor constants for several AChE inhibitors. The two forms of the enzyme had slightly different pH optima. The kinetic studies revealed no evidence that synaptosomal plasma membrane AChE has allosteric properties. The solubilized enzyme was further purified by affinity chromatography.  相似文献   

12.
Human placental microsomal 5'-nucleotidase (EC 3.1.3.5) was prepared free of alkaline phosphatase by isoelectric focusing. A total of seven electrophoretic variants were isolated during the preparation of six placentas. Only three to six variants were found in a single placenta. The isoelectric pH's were 6.70, 6.44, 6.23, 6.02, 5.76, 5.63 and 5.44. These were found to be composed of variable quantities of a large, medium and low molecular weight form. The apparent molecular weights of the medium and light form of the enzyme were 86 500 and 43 500, respectively, as estimated from Stokes radius and sedimentation velocity determinations. The electrophoretic variants were not distinguishable with respect to specific activity and Michaelis constants for AMP, GMP or CMP or inhibition by ATP, CTP or adenosine. These electrophoretic variants appeared to be pseudoisozymes based upon different states of aggregation of a common primary sequence. There was a wide range of substrate specificity among nucleoside 5'-monophosphates which included 2-deoxyribose compounds. With AMP as 100, substrate activity was: CMP, 122; NMN, 74; GMP, 68: IMP, 63; XMP, 28 and UDP-glucose, 68. The Michaelis constants for AMP, GMP and CMP ranged from 12-18 muM, from 33-67 muM and from 170-250 muM, respectively. Although 5'-nucleotidase was active in the absence of divalent cation, 5 mM MgCl2 stimulated the enzyme activity to 234% of control and shifted the pH optimum of 9.8 to a plateau from pH 7.4-9.8.  相似文献   

13.
Interaction of phosphorylase with 8-anilino-1-naphthalene-sulfonate (ANS) results in the formation of an ANS-protein complex. The microenvironment of the protein-bound dye changes depending on pH. Using fluorimetric titration, the dissociation constants for the complex (Kd = 23 and 57 microM for pH 6.2 and 6.8, respectively) were determined. The mode of the enzyme inhibition by ANS also changes depending on pH. At pH 6.8, ANS competitively inhibits the enzyme with respect to AMP, but does not compete with the nucleotide at pH 6.2; the corresponding Ki values are equal to 160 and 26 microM. The protective effect of ligands from the inhibiting effect of ANS was studied. It was shown that at pH 6.2, the enzyme is protected from the inhibition only by the substrate, glucose-1-phosphate, whereas at pH 6.8--by the allosteric inhibitor, glucose-6-phosphate. These findings suggest that at pH 6.2 the conformation of the enzyme molecule is induced by the substrate, while at pH 6.8--by the allosteric inhibitor. ANS binding in the vicinity of the active or allosteric centers is due to the pH-dependent conformational transition. The data obtained suggest that the pH changes within the range of 6.2-6.8 are essential for the regulation of enzyme activity.  相似文献   

14.
In this work we report that phosphate anions interact with the anion binding site of alcohol dehydrogenase from horse liver. In protection experiments against the two affinity labels, iodoacetic acid and bromo-imidazolylpropionic acid, the dissociation constant for the enzyme-phosphate complex at pH 7.0 is, based on total phosphate, found to be 20 +/- 5 mM. The 1,4-piperazinediethanesulfonate anion has a lower affinity for the anion binding site, the dissociation at pH 7.0 being 130 +/- 20 mM. The anion-independent dissociation constants for the reversible enzyme-affinity label complexes are at pH 7.0, 1.35 +/- 0.2 mM for iodoacetic acid and 0.39 +/- 0.05 mM for bromo-imidazolylpropionic acid. These findings have important implications with respect to past and future work on this well known enzyme.  相似文献   

15.
Thymidylate synthetase (EC 2.1.1.B.) from blast cells of patients with acute myelocytic leukemia has been purified more than 1470-fold by affinity column chromatography. Methotrexate was the affinity ligand. dUMP was found to be a necessary additive for retention of the enzyme by the affinity column. Disc electrophoresis and sucrose density gradient centrifugation revealed a single enzyme species with a molecular weight of 76,000. The enzyme exhibits a temperature-dependent conformational change with activation energies of 5.3 +/- 0.4 and 17.3 +/- 1.9 kcal/mol, respectively, above and below a transitional temperature of 35 degrees. This conformational change is reflected in the binding affinity of dUMP but not of 5,10-methylenetetrahydrofolate. The enzyme displays a broad pH maximum in the range of pH 7.4 to 8.8. The Michaelis constants for dUMP and (+/--L-5,10-methylenetetrahydrofolate are 1.8 +/- 0.2 and 31 +/- 8.3 micrometer, respectively. Initial velocity and product inhibition studies reveal the enzymic mechanism to be ordered sequential. dUMP binds before 5,10-methylenetetrahydrofolate and dihydrofolate is released before TMP. 5-Fluoro-2'-deoxy-5'-uridylate (FdUMP) behaves as in irreversible inhibitor with a Ki of 1.68 +/- 0.45 nM. The enzyme has a turnover number of 6 min-1 per FdUMP binding site. Methotrexate inhibits noncompetitively with respect to dUMP and binds tighter to the enzyme in the presence of dUMP. Methotrexate antagonizes inactivation of the enzyme by FdUMP.  相似文献   

16.
The S-adenosyl-methionine: catechol-O-methyltransferase (EC 2.1.1.6) from rat kidney was purified about 650 fold as compared with the homogenate and the result of disc electrophoresis presented. The purification involved extraction, precipitation at pH 5, ammonium sulfate fractionation, Chromatographies on Biogel 0.5 m, Ultrogel AcA 44 and DE Sephadex A 50. Affinity chromatography was tried but unsuccessful. The enzyme exhibited two pH optima at 7.9 and 9.6 with a minimum at about 8.9. The COMT had a temperature optimum of 50 degrees C, with activation energy of 23.1 Kcal/Mole between 25-35 degrees C, 18.9 Kcal/mole between 35-45 degrees C and the Q10 within the range of 25-35 degrees amounted to 3.5. The molecular weight was estimated to be 21500+/-1000 daltons from its behavior on Ultrogel AcA 44 and the pH1 determined by electrofocalisation was near 5.50. The time of half life of the best purified enzymatic extract was found to be 2 h 10 min. at -20 degrees C. At basic pH the instability of the enzyme was increased. Since O-methylation required the presence of divalent cations, our results show that apparent Michaelis constants for Mg++ and Mn++ were respectively 0.50 X 10(-3) M and 0.33 X 10(-5) M. The study of their Hill's number indicated that there was only one point of fixation on the enzyme. The Km value determined by Florini and Vestling's method were 2.5 X 10(-4) M and 11.9 X 10(-5) M for epinephrine and S-adenosyl-methionine respectively. All results were discussed with respect to other investigations.  相似文献   

17.
Recombinant mouse leukotriene A4 hydrolase was expressed in Escherichia coli as a fusion protein with ten additional amino acids at the amino terminus and was purified to apparent homogeneity by means of precipitation, anion exchange, hydrophobic interaction and chromatofocusing chromatographies. By atomic absorption spectrometry, the enzyme was shown to contain one mol of zinc/mol of enzyme. Apparent kinetic constants (Km and Vmax) for the conversion of leukotriene A4 to leukotriene B4 (at 0 degree C, pH 8) were 5 microM and 900 nmol/mg per min, respectively. The purified enzyme also exhibited significant peptidase activity towards the synthetic amide alanine-4-nitroanilide. Km and Vmax for this reaction (at 37 degrees C, pH 8) were 680 microM and 365 nmol/mg per min, respectively. Apo-leukotriene A4 hydrolase, prepared by treating the enzyme with 1,10-phenanthroline, was virtually inactive with respect to both enzymatic activities, but could be reactivated by addition of stoichiometric amounts of zinc or cobalt. Exposure of the enzyme to leukotriene A4 resulted in a dose-dependent inactivation of both enzyme activities.  相似文献   

18.
Dihydrofolate reductase from wild-type Escherichia coli (WT-ECDHFR) and from a mutant enzyme in which aspartate 27 is replaced by asparagine have been compared with respect to the binding of the inhibitor methotrexate (MTX). Although the Asp27----Asn substitution causes only small changes in the association rate constants (kon) for the formation of binary and ternary (with NADPH) complexes, the dissociation rate constants for these complexes (koff) are increased for the mutant enzyme by factors of about 5- and 100-fold, respectively, at pH 7.65. In binding experiments, the initial MTX binary and ternary complexes of the mutant enzyme were found to undergo relatively rapid isomerization (kobs approximately 17 and 145 s-1, respectively). Although such rapid isomerization of complexes of WT-ECDHFR could not be detected in binding experiments, evidence of a slow isomerization (k = 4 x 10(-3) s-1) of the ternary WT-ECDHFR.MTX.NADPH complex was obtained from progress of inhibition experiments. This slow isomerization increases binding of MTX to WT-ECDHFR only 2.4-fold (much less than previously estimated). From presently available data, we could not determine the contribution of the rapid isomerization of complexes to the binding of MTX to the mutant enzyme. The Asp27----Asn substitution increases the overall dissociation constant (KD) 9-fold for the binary complex and 85-fold for the ternary complex. When it is also taken into account that a proton ultimately derived from the solvent must be added to MTX bound to the WT enzyme, but not to MTX bound to the mutant enzyme, these increases in KD for the mutant enzyme correspond to decreases in binding energy for MTX of 3.9 and 5.2 kcal/mol at pH 7.65 for the binary and ternary complexes, respectively.  相似文献   

19.
ABSTRACT. A soluble enzyme amylopectin synthase (UDP-glucose-α 1,4-glucan α-4-glucosyltransferase) which transfers glucose from uridine 5'-diphosphate glucose (UDP-glucose) to a primer to form α-I,4-glucosyl linkages has been identified in the extracts of unsporulated oocysts of Eimeria tenella . UDP-glucose and not ADP-glucose was the most active glucosyl donor. Corn amylopectin, rabbit liver glycogen, oyster glycogen and corn starch served as primers; the latter two were less efficient. The enzyme has an apparent pH optimum of 7.5 and exhibited typical Michaelis-Menten kinetics with dependence on both the primer and substrate concentrations. The Michaelis constants (Km). with respect to UDP-glucose, was 0.5 mM; and 0.25 mg/ml and 1.25 mg/ml with respect to amylopectin and rabbit liver glycogen. The product formed by the reaction was predominantly a glucan containing α-1,4 linkages. The specificity of the enzyme suggests that this enzyme is similar to glycogen synthase in eukaryotes and has been designated as amylopectin synthase (UDP-glucose-α-1,4-glucosetransferase EC 2.4.1.11).  相似文献   

20.
A divalent cation electrode was used to measure the stability constants (association constants) for the magnesium and manganese complexes of the substrates for the NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) from pea stems. At an ionic strength of 26.5 mM and at pH 7.4 the stability constants for the Mg2+-isocitrate and Mg2+-NADP+ complexes were 0.85 +/- 0.2 and 0.43 +/- 0.04 mM-1 respectively and for the Mn2+-isocitrate and Mn2+-NADP+ complexes they were 1.25 +/- 0.07 and 0.75 +/- 0.09 mM-1 respectively. At the same ionic strength but at pH 6.0 the Mg2+-NADPH and Mn2+-NADPH complexes had stability constants of 0.95 +/- 0.23 and 1.79 +/- 0.34 mM-1 respectively. Oxalosuccinate and alpha-ketoglutarate do not form measureable complexes under these conditions. Saturation kinetics of the enzyme with respect to isocitrate and metal ions are consistent with the metal-isocitrate complex being the substrate for the enzyme. NADP+ binds to the enzyme in the free form. Saturation kinetics of NADPH and Mn2+ indicate that the metal-NADPH complex is the substrate in the reverse reaction. In contrast the pig heart enzyme appears to bind free NADPH and Mn2+. A scheme for the reaction mechanism is presented and the difference between the reversibility of the NAD+ and NADP+ enzyme is discussed in relation to the stability of the NADH and NADPH metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号