首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The products of three genes named CARGRI, CARGRII, and CARGRIII were shown to repress the expression of CAR1 and CAR2 genes, involved in arginine catabolism. CARGRI is identical to UME6 and encodes a regulator of early meiotic genes. In this work we identify CARGRII as SIN3 and CARGRIII as RPD3. The associated gene products are components of a high-molecular-weight complex with histone deacetylase activity and are recruited by Ume6 to promoters containing a URS1 sequence. Sap30, another component of this complex, is also required to repress CAR1 expression. This histone deacetylase complex prevents the synthesis of the two arginine catabolic enzymes, arginase (CAR1) and ornithine transaminase (CAR2), as long as exogenous nitrogen is available. Upon nitrogen depletion, repression at URS1 is released and Ume6 interacts with ArgRI and ArgRII, two proteins involved in arginine-dependent activation of CAR1 and CAR2, leading to high levels of the two catabolic enzymes despite a low cytosolic arginine pool. Our data also show that the deletion of the UME6 gene impairs cell growth more strongly than the deletion of the SIN3 or RPD3 gene, especially in the Sigma1278b background.  相似文献   

2.
3.
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.  相似文献   

4.
5.
The Saccharomyces cerevisiae RIM15 gene was identified previously through a mutation that caused reduced ability to undergo meiosis. We report here an analysis of the cloned RIM15 gene, which specifies a 1,770-residue polypeptide with homology to serine/threonine protein kinases. Rim15p is most closely related to Schizosaccharomyces pombe cek1+. Analysis of epitope-tagged derivatives indicates that Rim15p has autophosphorylation activity. Deletion of RIM15 causes reduced expression of several early meiotic genes (IME2, SPO13, and HOP1) and of IME1, which specifies an activator of early meiotic genes. However, overexpression of IME1 does not permit full expression of early meiotic genes in a rim15delta mutant. Ime1p activates early meiotic genes through its interaction with Ume6p, and analysis of Rim15p-dependent regulatory sites at the IME2 promoter indicates that activation through Ume6p is defective. Two-hybrid interaction assays suggest that Ime1p-Ume6p interaction is diminished in a rim15 mutant. Glucose inhibits Ime1p-Ume6p interaction, and we find that Rim15p accumulation is repressed in glucose-grown cells. Thus, glucose repression of Rim15p may be responsible for glucose inhibition of Ime1p-Ume6p interaction.  相似文献   

6.
7.
8.
9.
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat, whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.  相似文献   

10.
11.
12.
13.
14.
15.
16.
K F Cooper  M J Mallory  J B Smith    R Strich 《The EMBO journal》1997,16(15):4665-4675
The ume3-1 allele was identified as a mutation that allowed the aberrant expression of several meiotic genes (e.g. SPO11, SPO13) during mitotic cell division in Saccharomyces cerevisiae. Here we report that UME3 is also required for the full repression of the HSP70 family member SSA1. UME3 encodes a non-essential C-type cyclin (Ume3p) whose levels do not vary through the mitotic cell cycle. However, Ume3p is destroyed during meiosis or when cultures are subjected to heat shock. Ume3p mutants resistant to degradation resulted in a 2-fold reduction in SPO13 mRNA levels during meiosis, indicating that the down-regulation of this cyclin is important for normal meiotic gene expression. Mutational analysis identified two regions (PEST-rich and RXXL) that mediate Ume3p degradation. A third destruction signal lies within the highly conserved cyclin box, a region that mediates cyclin-cyclin-dependent kinase (Cdk) interactions. However, the Cdk activated by Ume3p (Ume5p) is not required for the rapid destruction of this cyclin. Finally, Ume3p destruction was not affected in mutants defective for ubiquitin-dependent proteolysis. These results support a model in which Ume3p, when exposed to heat shock or sporulation conditions, is targeted for destruction to allow the expression of genes necessary for the cell to respond correctly to these environmental cues.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号