首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
DNA “barcoding,” the determination of taxon-specific genetic variation typically within a fragment of the mitochondrial cytochrome oxidase 1 (cox1) gene, has emerged as a useful complement to morphological studies, and is routinely used by expert taxonomists to identify cryptic species and by non-experts to better identify samples collected during field surveys. The rate of molecular evolution in the mitochondrial genomes (mtDNA) of nonbilaterian animals (sponges, cnidarians, and placozoans) is much slower than in bilaterian animals for which DNA barcoding strategies were developed. If sequence divergence among nonbilaterian mtDNA and specifically cox1 is too slow to generate diagnostic variation, alternative genes for DNA barcoding and species-level phylogenies should be considered. Previous study across the Aplysinidae (Demospongiae, Verongida) family of sponges demonstrated no nucleotide substitutions in the traditional cox1 barcoding fragment among the Caribbean species of Aplysina. As the mitochondrial genome of Aplysina fulva has previously been sequenced, we are now able to make the first comparisons between complete mtDNA of congeneric demosponges to assess whether potentially informative variation exists in genes other than cox1. In this article, we present the complete mitochondrial genome of Aplysina cauliformis, a circular molecule 19620 bp in size. The mitochondrial genome of A. cauliformis is the same length as is A. fulva and shows six confirmed nucleotide differences and an additional 11 potential SNPs. Of the six confirmed SNPs, NADH dehydrogenase subunit 5 (nad5) and nad2 each contain two, and in nad2 both yield amino acid substitutions, suggesting balancing selection may act on this gene. Thus, while the low nucleotide diversity in Caribbean aplysinid cox1 extends to the entire mitochondrial genome, some genes do display variation. If these represent interspecific differences, then they may be useful alternative markers for studies in recently diverged sponge clades.  相似文献   

2.
Fragments of mitochondrial DNA (mtDNA) transferred to the nuclear genome are called nuclear mitochondrial DNAs (NUMTs). We report here a comparison of NUMT content between genomes from two species of the same genus. Analysis of the genomes of Phytophthora sojae and P. ramorum revealed large differences in the NUMT content of the two genomes: 16.27 x 10(-3) and 2.28 x 10(-3)% of each genome, respectively. Substantial differences also exist between the two species in the sizes of the NUMTs found in each genome, with ranges of 20 to 405 bp for P. sojae and 19 to 137 bp for P. ramorum. Furthermore, in P. sojae, fragments from the mitochondrial genes rns, rnl, coxl, and nad (various subunits) are found most frequently, whereas P. ramorum NUMTs most often originate from the cox3, rpsl4, nad4, and nad5 genes. The large differences in the presumptive mtDNA insertions suggest that the insertions occurred subsequent to the divergence of the two species, and this is supported by sequence comparisons among the NUMTs and the mtDNA sequences of the two species. P. sojae mtDNA sequences inserted in the nuclear genome appear to have been altered as a result of insertions, deletions, inversions, and translocations and provide insights into active mechanisms of sequence divergence in this plant pathogen. No clear examples were found of NUMTs forming functional nuclear genes or of NUMTs inserted into exons or introns of any nuclear gene.  相似文献   

3.
Complete sequences of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna are presented. In particular, small subunit (18S) and internal transcribed spacers (ITS1 and ITS2) of the ribosomal gene (rDNA), as well as cytochrome c oxidase subunit I (cox1) and nicotinamide dehydrogenase subunit I (nad1) of the mitochondrial DNA (mtDNA), were analyzed. The 18S and ITS sequences were compared with previously published sequences of the liver fluke Fasciola hepatica. Fixed interspecific genetic differences were determined that allow molecular differentiation of F. magna and F. hepatica using either the PCR-RFLP method or PCR amplification of species-specific DNA regions. Additionally, intraspecific sequence polymorphism of the complete cox1 and nad1 mitochondrial genes in geographically distinct F. magna populations was determined. Based on the sequence divergences, short (< 500 bp) variable regions suitable for broader biogeographical studies of giant liver fluke were designed.  相似文献   

4.
Wild brook charr populations (Salvelinus fontinalis) completely introgressed with the mitochondrial genome (mtDNA) of arctic charr (Salvelinus alpinus) are found in several lakes of northeastern Québec, Canada. Mitochondrial respiratory enzymes of these populations are thus encoded by their own nuclear DNA and by arctic charr mtDNA. In the present study we performed a comparative sequence analysis of the whole mitochondrial genome of both brook and arctic charr to identify the distribution of mutational differences across these two genomes. This analysis revealed 47 amino acid replacements, 45 of which were confined to subunits of the NADH dehydrogenase complex (Complex I), one in the cox3 gene (Complex IV), and one in the atp8 gene (Complex V). A cladistic approach performed with brook charr, arctic charr, and two other salmonid fishes (rainbow trout [Oncorhynchus mykiss] and Atlantic salmon [Salmo salar]) revealed that only five amino acid replacements were specific to the charr comparison and not shared with the other two salmonids. In addition, five amino acid substitutions localized in the nad2 and nad5 genes denoted negative scores according to the functional properties of amino acids and, therefore, could possibly have an impact on the structure and functional properties of these mitochondrial peptides. The comparison of both brook and arctic charr mtDNA with that of rainbow trout also revealed a relatively constant mutation rate for each specific gene among species, whereas the rate was quite different among genes. This pattern held for both synonymous and nonsynonymous nucleotide positions. These results, therefore, support the hypothesis of selective constraints acting on synonymous codon usage.  相似文献   

5.
6.
The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly.  相似文献   

7.
To gain insights into the nature of the mitochondrial genome in the common ancestor of all green plants, we have completely sequenced the mitochondrial DNA (mtDNA) of Mesostigma viride. This green alga belongs to a morphologically heterogeneous class (Prasinophyceae) that includes descendants of the earliest diverging green plants. Recent phylogenetic analyses of ribosomal RNAs (rRNAs) and concatenated proteins encoded by the chloroplast genome identified Mesostigma as a basal branch relative to the Streptophyta and the Chlorophyta, the two phyla that were previously thought to contain all extant green plants. The circular mitochondrial genome of Mesostigma resembles the mtDNAs of green algae occupying a basal position within the Chlorophyta in displaying a small size (42,424 bp) and a high gene density (86.6% coding sequences). It contains 65 genes that are conserved in other mtDNAs. Although none of these genes represents a novel coding sequence among green plant mtDNAs, four of them (rps1, sdh3, sdh4, and trnL[caa]) have not been reported previously in chlorophyte mtDNAs, and two others (rpl14 and trnI[gau]) have not been identified in the streptophyte mtDNAs examined so far (land-plant mtDNAs). Phylogenetic analyses of 19 concatenated mtDNA-encoded proteins favor the hypothesis that Mesostigma represents the earliest branch of green plant evolution. Four group I introns (two in rnl and two in cox1) and three group II introns (two in nad3 and one in cox2), two of which are trans-spliced at the RNA level, reside in Mesostigma mtDNA. The insertion sites of the three group II introns are unique to this mtDNA, suggesting that trans-splicing arose independently in the Mesostigma lineage and in the Streptophyta. The few structural features that can be regarded as ancestral in Mesostigma mtDNA predict that the common ancestor of all green plants had a compact mtDNA containing a minimum of 75 genes and perhaps two group I introns. Considering that the mitochondrial genome is much larger in size in land plants than in Mesostigma, we infer that mtDNA size began to increase dramatically in the Streptophyta either during the evolution of charophyte green algae or during the transition from charophytes to land plants.  相似文献   

8.
Woo PC  Zhen H  Cai JJ  Yu J  Lau SK  Wang J  Teng JL  Wong SS  Tse RH  Chen R  Yang H  Liu B  Yuen KY 《FEBS letters》2003,555(3):469-477
We report the complete sequence of the mitochondrial genome of Penicillium marneffei, the first complete mitochondrial DNA sequence of a thermal dimorphic fungus. This 35 kb mitochondrial genome contains the genes encoding ATP synthase subunits 6, 8, and 9 (atp6, atp8, and atp9), cytochrome oxidase subunits I, II, and III (cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), ribosomal protein of the small ribosomal subunit (rps), 28 tRNAs, and small and large ribosomal RNAs. Analysis of gene contents, gene orders, and gene sequences revealed that the mitochondrial genome of P. marneffei is more closely related to those of molds than yeasts.  相似文献   

9.
The present study compared the genetic variation among 14 different geographical isolates of Opisthorchis viverrini sensu lato from Thailand and Lao PDR using sequence data for 2 mitochondrial DNA genes, the subunit 1 of NADH dehydrogenase gene (nad1) and cytochrome c oxidase gene (cox1). Four different nad1 haplotypes were detected among isolates, all of which were identical at the amino acid sequence level. Nucleotide sequence variation among 14 isolates ranged from 0 to 0.3% for nad1. Two different cox1 haplotypes were detected among isolates. These two haplotypes differed at 2 nucleotide positions, one of which resulted in a change in the amino acid sequence. Nucleotide sequence variation among isolates for cox1 ranged from 0 to 0.5%. Comparison of cox1 sequences of O. viverrini to those of other trematodes revealed nucleotide differences of 13-31%. A phylogenetic analysis of the cox1 sequence data revealed strong statistical support for a clade containing O. viverrini and 2 other species of opisthorchid trematodes; O. felineus and Clonorchis sinsensis.  相似文献   

10.
Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (nad1-6 and nad4L, cob and cox1-3), one ATP synthase subunit (atp6), 4 hypothetical proteins, and two genes for large and small rRNAs (rnl and rns). There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that S. bambusicola clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (nad6-atp6), block 2 (nad1-cox3) and block 3 (genes around rns). S. bambusicola displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around rns (trnR-trnY). Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as cox3, cox1-cox2 and nad2–nad3); these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the atp6 gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.  相似文献   

11.
It is important to verify mitochondrial inheritance in plant species in which mitochondrial DNA (mtDNA) will be used as a source of molecular markers. We used a polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) approach to amplify mitochondrial introns from subunits 1, 4, 5, and 7 of NADH dehydrogenase (nad) and cytochrome oxidase subunit II (cox2) in Eucalyptus globulus. PCR fragments were then either sequenced or cut with restriction enzymes to reveal polymorphism. Sequencing cox2 showed that eucalypts lack the intron between exons 1 and 2. One polymorphism was found in intron 2-3 of nad7 following restriction digests with HphI. Fifty-four F1 progeny from seven families with parents distinguishable in their mitochondrial nad7 were screened to show that mitochondria were maternally inherited in E. globulus. These results constitute the first report of mitochondrial inheritance in the family Myrtaceae.  相似文献   

12.
Sequence variability in two mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 4 (nad4), and internal transcribed spacer (ITS) of rDNA among and within three cestodes, Spirometra erinaceieuropaei, Taenia multiceps and Taenia hydatigena, from different geographical origins in China was examined. A portion of the cox1 (pcox1), nad4 genes (pnad4) and the ITS (ITS1+5.8S rDNA+ITS2) were amplified separately from individual cestodes by polymerase chain reaction (PCR). Representative amplicons were subjected to sequencing in order to estimate sequence variability. While the intra-specific sequence variations within each of the tapeworm species were 0-0.7% for pcox1, 0-1.7% for pnad4 and 0.1-3.6% for ITS, the inter-specific sequence differences were significantly higher, being 12.1-17.6%, 18.7-26.2% and 31-75.5% for pcox1, pnad4 and ITS, respectively. Phylogenetic analyses based on the pcox1 sequence data revealed that T. multiceps and T. hydatigena were more closely related to the other members of the Taenia genus, and S. erinaceieuropaei was more closely related to the other members of the Spirometra genus. These findings demonstrated clearly the usefulness of mtDNA and rDNA sequences for population genetic studies of these cestodes of socio-economic importance.  相似文献   

13.
Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and two tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax).  相似文献   

14.
The 22,704-bp circular mitochondrial DNA (mtDNA) of the chlamydomonad alga Chlorogonium elongatum was completely cloned and sequenced. The genome encodes seven proteins of the respiratory electron transport chain, subunit 1 of the cytochrome oxidase complex (cox1), apocytochrome b (cob), five subunits of the NADH dehydrogenase complex (nad1, nad2, nad4, nad5, and nad6), a set of three tRNAs (Q, W, M), and the large (LSU)- and small (SSU)-subunit ribosomal RNAs. Six group-I introns were found, two each in the cox1, cob, and nad5 genes. In each intron an open reading frame (ORF) related to maturases or endonucleases was identified. Both the LSU and the SSU rRNA genes are split into fragments intermingled with each other and with other genes. Although the average A + T content is 62.2%, GC-rich clusters were detected in intergenic regions, in variable domains of the rRNA genes, and in introns and intron-encoded ORFs. A comparison of the genome maps reveals that C. elongatum and Chlamydomonas eugametos mtDNAs are more closely related to one another than either is to Chlamydomonas reinhardtii mtDNA. Received: 3 November 1997 / Accepted: 12 January 1998  相似文献   

15.
In this study, the full mitochondrial genome of a basidiomycete fungus, Pleurotus ostreatus, was sequenced and analyzed. It is a circular DNA molecule of 73 242 bp and contains 44 known genes encoding 18 proteins and 26 RNA genes. The protein-coding genes include 14 common mitochondrial genes, one ribosomal small subunit protein 3 gene, one RNA polymerase gene and two DNA polymerase genes. In addition, one RNA and one DNA polymerase genes were identified in a mitochondrial plasmid. These two genes show relatively low similarities to their homologs in the mitochondrial genome but they are nearly identical to the known mitochondrial plasmid genes from another Pleurotus ostreatus strain. This suggests that the plasmid may mediate the horizontal gene transfer of the DNA and RNA polymerase genes into mitochondrial genome, and such a transfer may be an ancient event. Phylogenetic analysis based on the cox1 ORFs verified the traditional classification of Pleurotus ostreatus among fungi. However, the discordances were observed in the phylogenetic trees based on the six cox1 intronic ORFs of Pleurotus ostreatus and their homologs in other species, suggesting that these intronic ORFs are foreign DNA sequences obtained through HGT. In summary, this analysis provides valuable information towards the understanding of the evolution of fungal mtDNA.  相似文献   

16.
Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria)   总被引:33,自引:0,他引:33  
Mitochondrial genes have been used extensively in population genetic and phylogeographical analyses, in part due to a high rate of nucleotide substitution in animal mitochondrial DNA (mtDNA). Nucleotide sequences of anthozoan mitochondrial genes, however, are virtually invariant among conspecifics, even at third codon positions of protein-coding sequences. Hence, mtDNA markers are of limited use for population-level studies in these organisms. Mitochondrial gene sequence divergence among anthozoan species is also low relative to that exhibited in other animals, although higher level relationships can be resolved with these markers. Substitution rates in anthozoan nuclear genes are much higher than in mitochondrial genes, whereas nuclear genes in other metazoans usually evolve more slowly than, or similar to, mitochondrial genes. Although several mechanisms accounting for a slow rate of sequence evolution have been proposed, there is not yet a definitive explanation for this observation. Slow evolution and unique characteristics may be common in primitive metazoans, suggesting that patterns of mtDNA evolution in these organisms differ from that in other animal systems.  相似文献   

17.
Wang X  Lavrov DV 《PloS one》2008,3(7):e2723
Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA) organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida). Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida) including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements, occurred in parallel in several lineages and suggest general trends in demosponge mtDNA evolution.  相似文献   

18.

Background  

Nuclear ribosomal DNA (rDNA) genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2) and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG). This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation) through heteroduplex analysis and DNA sequencing via cloning.  相似文献   

19.
Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 3 (cox3), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4) in Spirometra erinaceieuropaei spargana from different geographical regions in China was examined. A portion of each of the cox3 (pcox3), nad1 (pnad1) and nad4 genes (pnad4) were amplified separately from individual S. erinaceieuropaei spargana by polymerase chain reaction (PCR). Representative amplicons were subjected to sequencing in order to estimate sequence variability. The sequences of pcox3, pnad1 and pnad4 were 541, 607 and 847?bp in length, respectively. The A+T contents of the sequences were 68.39-68.76% (pcox3), 63.76-64.91% (pnad1) and 67.18-67.77% (pnad4), respectively, while the intra-specific sequence variations within each of the S. erinaceieuropaei spargana were 0-1.5% for pcox3, 0-2.8% for pnad1 and 0-2.7% for pnad4. Phylogenetic analysis using neighbour joining (NJ), maximum likelihood (ML) and maximum parsimony (MP) methods, indicated that all the spargana isolates in Hunan Province represented S. erinaceieuropaei. These findings demonstrated clearly the usefulness of the three mtDNA sequences for population genetics studies of S. erinaceieuropaei spargana of human and animal health significance.  相似文献   

20.
Octocoral mitochondrial (mt) DNA is subject to an exceptionally low rate of substitution, and it has been suggested that mt genome content and structure are conserved across the subclass, an observation that has been supported for most octocorallian families by phylogenetic analyses using PCR products spanning gene boundaries. However, failure to recover amplification products spanning the nad4L-msh1 gene junction in species from the family Isididae (bamboo corals) prompted us to sequence the complete mt genome of a deep-sea bamboo coral (undescribed species). Compared to the "typical" octocoral mt genome, which has 12 genes transcribed on one strand and 5 genes on the opposite (cox2, atp8, atp6, cox3, trnM), in the bamboo coral genome a contiguous string of 5 genes (msh1, rnl, nad2, nad5, nad4) has undergone an inversion, likely in a single event. Analyses of strand-specific compositional asymmetry suggest that (i) the light-strand origin of replication was also inverted and is adjacent to nad4, and (ii) the orientation of the heavy-strand origin of replication (OriH) has reversed relative to that of previously known octocoral mt genomes. Comparative analyses suggest that intramitochondrial recombination and errors in replication at OriH may be responsible for changes in gene order in octocorals and hexacorals, respectively. Using primers flanking the regions at either end of the inverted set of five genes, we examined closely related taxa and determined that the novel gene order is restricted to the deep-sea subfamily Keratoisidinae; however, we found no evidence for strand-specific mutational biases that may influence phylogenetic analyses that include this subfamily of bamboo corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号