首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasome, a high molecular weight protease complex (HMP, approximately 600 kDa) was isolated from bovine eye lens epithelium tissue. In contrast with prior reports, lens proteasome degraded the major lens protein alpha-crystallin and S-carboxymethylated bovine serum albumin at 37 degrees C, mostly to trichloroacetic acid precipitable polypeptides. The proteasome, thus isolated, was labile at 55 degrees C. As indicated by the ability of p-chloromercuribenzoate and N-ethylmaleimide to block activity, a thiol group is required for activity. Alpha-crystallin was oxidized by exposure to 60Co-irradiation under an atmosphere of N2O (1-50 kilorads). This dose delivered 0.1-5.7 mol of hydroxyl radicals per mol of crystallin. Irradiation resulted in increased heterogeneity, aggregation, and fragmentation of the crystallin preparation. The proteolytic susceptibility of alpha-crystallin to the lens HMP was enhanced by the irradiation in a dose-dependent manner up to 20 kilorads (.OH concentration up to 2.3 mol per mol of alpha-crystallin). When 50 kilorads (5.7 mol .OH per mol of alpha-crystallin) was used, there was extensive aggregation and no enhancement in proteolysis over the unirradiated sample. The data indicate that the lens HMP can degrade mildly photooxidized lens proteins, but proteins which are extensively damaged are not degraded and may accumulate. This may be related to cataract formation.  相似文献   

2.
alpha-Crystallin, a major eye lens protein, has been shown to function like a molecular chaperone by suppressing the aggregation of other proteins induced by various stress conditions. Ultraviolet (UV) radiation is known to cause structural and functional alterations in the lens macromolecules. Earlier we observed that exposure of rat lens to in vitro UV radiation led to inactivation of many lens enzymes including glucose-6-phosphate dehydrogenase (G6PD). In the present paper, we show that alpha-crystallin (alphaA and alphaB) protects G6PD from UVB irradiation induced inactivation. While, at 25 degrees C, there was a time-dependent decrease in G6PD activity upon irradiation at 300 nm, at 40 degrees C there was a complete loss of activity within 30 min even without irradiation. The loss of activity of G6PD was prevented significantly, if alphaA- or alphaB-crystallin was present during irradiation. At 25 degrees C, alphaB-crystallin was slightly a better chaperone in protecting G6PD against UVB inactivation. Interestingly, at 40 degrees C, alphaA- and alphaB-crystallins not only prevent the loss of G6PD activity but also protect against UVB inactivation. However, alphaA- and alphaB-crystallins were equally efficient at 40 degrees C in protecting G6PD.  相似文献   

3.
alpha-Crystallin, a molecular chaperone of the eye lens, plays an important role in maintaining the transparency of the lens by preventing the aggregation/inactivation of several proteins and enzymes in addition to its structural role. alpha-Crystallin is a long-lived protein and is susceptible to several posttranslational modifications during aging, more so in certain clinical conditions such as diabetes. Nonenzymatic glycation of lens proteins and decline in the chaperone-like function of alpha-crystallin have been reported in diabetic conditions. Therefore, inhibitors of nonenzymatic protein glycation appear to be a potential target to preserve the chaperone activity of alpha-crystallin and to combat cataract under hyperglycemic conditions. In this study, we investigated the antiglycating potential of cumin in vitro and its ability to modulate the chaperone-like activity of alpha-crystallin vis-à-vis the progression of diabetic cataract in vivo. Aqueous extract of cumin was tested for its antiglycating ability against fructose-induced glycation of goat lens total soluble protein (TSP), alpha-crystallin from goat lens and a nonlenticular protein bovine serum albumin (BSA). The antiglycating potential of cumin was also investigated by feeding streptozotocin (STZ)-induced diabetic rats with diet containing 0.5% cumin powder. The aqueous extract of cumin prevented in vitro glycation of TSP, alpha-crystallin and BSA. Slit lamp examination revealed that supplementation of cumin delayed progression and maturation of STZ-induced cataract in rats. Cumin was effective in preventing glycation of TSP and alpha-crystallin in diabetic lens. Interestingly, feeding of cumin to diabetic rats not only prevented loss of chaperone activity but also attenuated the structural changes of alpha-crystallin in lens. These results indicated that cumin has antiglycating properties that may be attributed to the modulation of chaperone activity of alpha-crystallin, thus delaying cataract in STZ-induced diabetic rats.  相似文献   

4.
We have studied the interaction between lysozyme, destabilized by reducing its -S-S- bonds, and bovine eye lens alpha-crystallin, a member of the alpha-small heat shock protein superfamily. We have used gel filtration, photon correlation spectroscopy, and analytical ultracentrifugation to study the binding of lysozyme by alpha-crystallin at 25 degrees C and 37 degrees C. We can conclude that alpha-crystallin chaperones the destabilized protein in a two-step process. First the destabilized proteins are bound by the alpha-crystallin so that nonspecific aggregation of the destabilized protein is prevented. This complex is unstable, and a reorganization and inter-particle exchange of the peptides result in stable and soluble large particles. alpha-Crystallin does not require activation by temperature for the first step of its chaperone activity as it prevents the formation of nonspecific aggregates at 25 degrees C as well as at 37 degrees C. The reorganization of the peptides, however, gives rise to smaller particles at 37 degrees C than at 25 degrees C. Indirect evidence shows that the association of several alpha-crystallin/substrate protein complexes leads to the formation of very large particles. These are responsible for the increase of the light scattering.  相似文献   

5.
The present work investigates the effect of malondialdehyde (MDA) binding on the enzymic activity and on some structural properties of glucose 6-phosphate dehydrogenase (G6PD). We studied whether alpha-crystallin could protect the enzyme against MDA damage, and if so, by what mechanism. We also studied whether alpha-crystallin could renature G6PD denatured by MDA. alpha-Crystallin was prepared from bovine lenses by gel chromatography. MDA was freshly prepared and incubated with G6PD with or without alpha-crystallin. The results show that MDA reacted with G6PD non-enzymically causing inactivation at concentrations lower than those used previously on structural proteins. The modified enzyme became fluorescent. alpha-Crystallin, acting as a molecular chaperone, specifically protected the enzyme against inactivation by MDA. The enzyme was not reactivated by alpha-crystallin, but it was stabilised and protected against further denaturation. Complex formation between alpha-crystallin and the modified enzyme was demonstrated by immunoprecipitation. G6PD was very susceptible to MDA and we have shown for the first time that alpha-crystallin is able to protect the enzyme against this damage.  相似文献   

6.
The study of thermal denaturation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of alpha-crystallin by differential scanning calorimetry (DSC) showed that the position of the maximum on the DSC profile (T(max)) was shifted toward lower temperatures with increasing alpha-crystallin concentration. The diminishing GAPDH stability in the presence of alpha-crystallin has been explained assuming that heating of GAPDH induces dissociation of the tetrameric form of the enzyme into dimers interacting with alpha-crystallin. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. Suppression of thermal aggregation of GAPDH by alpha-crystallin was studied by dynamic light scattering under the conditions wherein temperature was elevated at a constant rate. The construction of the light scattering intensity versus the hydrodynamic radius (R(h)) plots enabled estimating the hydrodynamic radius of the start aggregates (R(h,0)). When aggregation of GAPDH was studied in the presence of alpha-crystallin, the start aggregates of lesser size were observed.  相似文献   

7.
alpha-Crystallin, a major lens protein of approximately 800 kDa with subunits of approximately 20 kDa has previously been shown to act as a chaperone protecting other proteins from stress-induced aggregation. Here it is demonstrated that alpha-crystallin can bind to partially denatured enzymes at 42-43 degrees C and prevent their irreversible aggregation, but cannot prevent loss of enzyme activity. However, the alpha-crystallin-bound enzymes regain activity on interaction with other chaperones. The data indicate that the re-activated enzymes are no longer associated with the alpha-crystallin, and ATP is required for re-activation. When inactive luciferase bound to alpha-crystallin was treated with reticulocyte lysate, a rich source of chaperones, up to 60% of the original luciferase activity could be recovered. Somewhat less re-activation was observed when the alpha-crystallin-bound enzyme was treated with heat-shock protein (HSP)70, HSP40, HSP60 and an ATP-generating system. Similar results were also obtained with citrate synthase. The overall results suggest that alpha-crystallin acts to stabilize denaturing proteins so that they can later be re-activated by other chaperones.  相似文献   

8.
The protective action of alpha-crystallin against copper-induced protein stress is studied using bovine lens aldose reductase (ALR2) as protein model. The oxidative inactivation of ALR2 induced by CuCl2 at the stoichiometric Cu2+/ALR2 ratio of 2/1 [I. Cecconi, M. Moroni, P.G. Vilardo, M. Dal Monte, P. Borella, G. Rastelli, L. Costantino, D. Garland, D. Carper, J.M. Petrash, A. Del Corso, U. Mura, Biochemistry 37 (1998) 14167-14174] is accompanied by protein aggregation phenomena when the metal ion concentration is increased (Cu2+/ALR2>3). Protein oxidation precedes protein precipitation. Both inactivation and precipitation of ALR2 are prevented by alpha-crystallin in a concentration-dependent manner. The rationale for the stabilization of ALR2 exerted by alpha-crystallin at low metal concentration is given on the basis of the ability of alpha-crystallin to chelate copper. However, the overall protective action exerted by alpha-crystallin at higher copper concentration may be explained invoking the contribution of the special features of alpha-crystallin to easily interact with target proteins undergoing structural rearrangement.  相似文献   

9.
The kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscle have been studied by dynamic light scattering (0.08M Hepes, pH 6.8, containing 0.1M NaCl; 48 degrees C). The hydrodynamic radius of the start aggregates determined from the initial linear parts of the dependences of the hydrodynamic radius (R(h)) on time was found to be 16.7 +/- 1.0 nm. At rather high values of time, the R(h) value for the protein aggregates becomes proportional to t(1/1.8) = t(0.56) suggesting that the aggregation process proceeds in the regime of diffusion-limited cluster-cluster aggregation. In the presence of alpha-crystallin, a protein possessing the chaperone-like activity, the process of protein aggregation switches to the regime of reaction-limited cluster-cluster aggregation as indicated by the exponential dependence of the R(h) value on time. It was shown that the addition of alpha-crystallin raises the rate of thermal inactivation of Phb. These data in combination with the results of the study of interaction of Phb with alpha-crystallin by analytical ultracentrifugation suggest that alpha-crystallin interacts with the intermediates of unfolding of the Phb molecule.  相似文献   

10.
Alpha-crystallin, a molecular chaperone and lens structural protein protects soluble enzymes against heat-induced aggregation and inactivation by a variety of molecules. In this study we investigated the chaperone function of alpha-crystallin in a more physiological system in which alpha-crystallin was incorporated into red cell 'ghosts'. Its ability to protect the intrinsic membrane protein Na/K-ATPase from external stresses was studied. Red cell ghosts were created by lysing the red cells and removing cytoplasmic contents by size-exclusion chromatography. The resulting ghost cells retain Na/K-ATPase activity. alpha-Crystallin was incorporated in the cells on resealing and the activity of Na/K-ATPase assessed by ouabain-sensitive 86Rb uptake. Incubation with fructose, hydrogen peroxide and methylglyoxal (compounds that have been implicated in diabetes and cataract formation) were used to test inactivation of the Na/K pump. Intracellular alpha-crystallin protected against the decrease in ouabain sensitive 86Rb uptake, and therefore against inactivation induced by all external modifiers, in a dose-dependent manner.  相似文献   

11.
The chaperone-like activity of alpha-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of alpha-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of alpha-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of alpha-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of alpha-crystallin. Modification of alpha-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [N(epsilon)-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of alpha-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of alpha-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, alpha-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE fluorescence, CML formation and diminished chaperone activity. These results indicate the susceptibility of alpha-crystallin to non-enzymatic glycation by various sugars and their derivatives, whose levels are elevated in diabetes. We also describe the effects of glycation on the structure and chaperone-like activity of alpha-crystallin.  相似文献   

12.
alpha-Crystallin, a heteromultimeric protein made up of alphaA- and alphaB-crystallins, functions as a molecular chaperone in preventing the aggregation of proteins. We have shown earlier that structural perturbation of alpha-crystallin can enhance its chaperone-like activity severalfold. The two subunits of alpha-crystallin have extensive sequence homology and individually display chaperone-like activity. We have investigated the chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates against thermal and nonthermal modes of aggregation. We find that, against a nonthermal mode of aggregation, alphaB-crystallin shows significant protective ability even at subphysiological temperatures, at which alphaA-crystallin or heteromultimeric alpha-crystallin exhibit very little chaperone-like activity. Interestingly, differences in the protective ability of these homoaggregates against the thermal aggregation of beta(L)-crystallin is negligible. To investigate this differential behavior, we have monitored the temperature-dependent structural changes in both the proteins using fluorescence and circular dichroism spectroscopy. Intrinsic tryptophan fluorescence quench-ing by acrylamide shows that the tryptophans in alphaB-crystallin are more accessible than the lone tryptophan in alphaA-crystallin even at 25 degrees C. Protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates the higher solvent accessibility of hydrophobic surfaces on alphaB-crystallin. Circular dichroism studies show some tertiary structural changes in alphaA-crystallin above 50 degrees C. alphaB-crystallin, on the other hand, shows significant alteration of tertiary structure by 45 degrees C. Our study demonstrates that despite a high degree of sequence homology and their generally accepted structural similarity, alphaB-crystallin is much more sensitive to temperature-dependent structural perturbation than alphaA- or alpha-crystallin and shows differences in its chaperone-like properties. These differences appear to be relevant to temperature-dependent enhancement of chaperone-like activity of alpha-crystallin and indicate different roles for the two proteins both in alpha-crystallin heteroaggregate and as separate proteins under stress conditions.  相似文献   

13.
An extramitochondrial acetyl-coenzyme-A hydrolase from rat liver is shown to be a cold-labile oligomeric enzyme that undergoes a reversible conformational transition between a dimeric and a tetrameric form in the presence of adenosine 5'-triphosphate or adenosine 5'-diphosphate at 25-37 degrees C, and between a dimeric and a monomeric form at low temperature. The enzymatically active dimer is fairly stable at 25-37 degrees C, but much less stable at low temperature, dissociating into monomer with no activity. At 37 degrees C and low concentrations of enzyme protein (less than or equal to 14 micrograms/ml), the activity decreased rapidly and only 10% of the initial activity remaining after 60 min. Addition of bovine serum albumin or immunoglobulin G to the medium completely prevented inactivation of the dimeric enzyme at low concentration at 37 degrees C, but had little effect on cold inactivation of the enzyme. Cold inactivation of the dimeric enzyme was partially prevented by the presence of various CoA derivatives. The order of potency was acetyl-CoA (substrate) greater than or equal to butyryl-CoA greater than octanoyl-CoA greater than CoA (product) greater than acetoacetyl-CoA. Another enzyme product, acetate, had little effect on cold inactivation. Polyols, such as sucrose, glycerol, and ethylene glycol, and high concentrations of NaCl, KCl, pyrophosphate and phosphate also greatly prevented cold inactivation. Cold inactivation was scarcely affected by pH within the pH range at which the enzyme was stable at 37 degrees C.  相似文献   

14.
beta-Galactosidase from Bacillus stearothermophilus.   总被引:6,自引:0,他引:6  
Several strains of thermophilic aerobic spore-forming bacilli synthesize beta-galactosidase (EC 3.2.1.23) constitutively. The constitutivity is apparently not the result of a temperature-sensitive repressor. The beta-galactosidase from one strain, investigated in cell-free extracts, has a pH optimum between 6.0 and 6.4 and a very sharp pH dependence on the acid side of its optimum. The optimum temperature for this enzyme is 65 degrees C and the Arrhenius activation energy is about 24 kcal/mol below 47 degrees C and 16 kcal/mol above that temperature. At 55 degrees C the Km is 0.11 M for lactose and 9.8 X 10(-3) M for 9-nitrophenyl-beta-D-galactopyranoside. The enzyme is strongly product-inhibited by galactose (Ki equals 2.5 X 10(-3) M). It is relatively stable at 50 degrees C, losing only half of its activity after 20 days at this temperature. At 60 degrees C more than 60% of the activity is lost in 10 min. However, the enzyme is protected somewhat against thermal inactivation by protein, and in the presence of 4 mg/ml of bovine serum albumin the enzyme is only 18% inactivated in 10 min at 60 degrees C. Its molecular weight, estimated by disc gel electrophoresis, is 215 000.  相似文献   

15.
Vekshin NL  Sukharev VI 《Biofizika》2005,50(2):236-242
Some properties of bovine alpha-crystallin, in particular its thermo- and photoaggregation, were studied by fluorescent spectroscopy of tryptophan residues and the probe 8-anilino-1-naphthalenesulfonate and light scattering. The effective diameter of a globule of native alpha-crystallin was 90 A, as estimated from the data on the polarization and lifetime of 8-anilino-1-naphthalenesulfonate using the Levshin-Perren equation, and increases at an aggregation of no less than 140 A. The increase in the intensity of tryptophan fluorescence of alpha-crystallin during its thermo- and photodenaturation with the formation of aggregates is due to local conformational changes in the surroundings of tryptophan residues and light scattering. Tryptophan residues are buried in the interior of the aggregates. The thermoaggregation of the protein occurs not only at high temperatures. By approximating the experimental time dependence of slow spontaneous aggregation to the range of large times, the time of denaturation aggregation t(e) was found. For alpha-crystallin (at a concentration of 0.8 mg/ml in phosphate buffer at pH 8.4), t(e) at 70 degrees C is 100 h. This approach can be used in finding t(e) for any protein during its thermal treatment or long-term storage.  相似文献   

16.
1. In diapausing eggs of the silkworm, Bombyx mori, activity of NAD-sorbitol dehydrogenase (EC 1.1.1.14, SDH) is almost negligible, but is increased by acclimation at 5 degrees C (Yaginuma et al., 1990, J. comp. Physiol. B160, 277-285). To elucidate the mechanism regulating SDH activity, the following experiments were conducted. Anti-SDH serum was made in a mouse using purified sheep liver SDH. 2. This antiserum reacted with Bombyx egg SDH purified partially by Blue Sepharose CL-6B and Sephacryl S-300 column chromatographies. 3. SDS-PAGE and immunoblotting analyses using the antiserum showed that SDH activity was correlated with the amount of the enzyme protein. 4. These results indicate that biosynthesis of SDH is induced by acclimation at 5 degrees C in diapause eggs of B. mori.  相似文献   

17.
Uracil-DNA glycosylase of thermophilic Thermothrix thiopara.   总被引:1,自引:1,他引:0  
An activity which released free uracil from dUMP-containing DNA was purified approximately 1,700-fold from extracts of Thermothrix thiopara, the first such activity to be isolated from extremely thermophilic bacteria. The enzyme appeared homogeneous, according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a native molecular weight of 26,000 and existed as a monomer protein in water solution. The enzyme had an optimal activity at 70 degrees C, between pH 7.5 and 9.0, and in the presence of 0.2% Triton X-100. It had no cofactor requirement and was not inhibited by EDTA, but it was sensitive to N-ethylmaleimide. The purified enzyme did not contain any nuclease that acted on native or depurinated DNA. The Arrhenius activation energy was 76 kJ/mol between 30 and 50 degrees C and 11 kJ/mol between 50 and 70 degrees C. The rate of heat inactivation of the enzyme followed first-order kinetics with a half-life of 2 min at 70 degrees C. Ammonium sulfate and bovine serum albumin protected the enzyme from heat inactivation. One T. thiopara cell contains enough activity to release about 2 X 10(8) uracil residues from DNA during one generation time at 70 degrees C.  相似文献   

18.
B Kierdaszuk  S Eriksson 《Biochemistry》1990,29(17):4109-4114
Deoxycytidine kinase, purified from human leukemic spleen to apparent homogeneity, is a multisubstrate enzyme that also phosphorylates purine deoxyribonucleosides [Bohman & Eriksson (1988) Biochemistry 27, 4258-4265]. In the present investigation we show that the stability and temperature dependence of dCyd kinase activity differed appreciably from the dAdo kinase activity of the same pure enzyme. Selective inactivation of dAdo activity was observed upon an incubation of the enzyme at both 4 and 37 degrees C. The half-life of dAdo activity at 4 degrees C increased from 36 to 84 h, when the protein concentration was increased by addition of bovine serum albumin. However, the half-life of dCyd activity increased from 72 h to more than 7 days under the same conditions. dCyd activity was stable for at least 6 h at 37 degrees C while the half-life of dAdo activity was 2 h. The presence of substrates like ATP, dTTP, or dAdo stabilized dAdo activity at both temperatures, and full maintenance of both activities at 37 degrees C was obtained by the addition of the zwitterionic detergent CHAPS. Furthermore, thermal inactivation of the dAdo activity occurred at a lower temperature (48 degrees C) as compared to the dCyd activity (54 degrees C). The presence of protease inhibitors had no effect on enzyme inactivation, nor was there a difference in the subunit structure of the selectively inactivated enzyme as compared to the fully active form, as revealed by size-exclusion chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Yan H  Harding JJ 《Biological chemistry》2003,384(8):1185-1194
Previously we showed that glycation-induced inactivation and loss of antigenicity of enzymes occur simultaneously. Alpha-crystallin, a major structural protein of the mammalian lens, prevents the aggregation of other proteins and protects enzyme function against post-translational modification in vitro. However, it is not known whether alpha-crystallin can also protect against loss of antigenicity of enzymes. Esterase activity in the lens is decreased in senile cataract and diabetes. We investigated the loss of antigenicity of esterase caused by different insults and the ability of alpha-crystallin to protect. Inactivation of carboxylesterase by sugars, fructose 6-phosphate (F6P) and a steroid, prednisolone-21-hemisuccinate (P-21-H), was measured spectrophotometrically in the presence and absence of alpha-crystallin, while loss of antigenicity was monitored simultaneously using an immunoprecipitation method. The esterase was progressively inactivated by fructose, F6P, ribose, and P-21-H. Bovine alpha-crystallin fully protected against inactivation of esterase by all four compounds, and also protected against loss of antigenicity of the esterase by fructose, ribose and P-21-H at a molar ratio of 1:1. The results indicated that alpha-crystallin, under our experimental conditions, clearly exhibited the ability to prevent loss of antigenicity and inactivation of esterase. The protective effect of alpha-crystallin against loss of antigenicity indicates a novel aspect of its chaperoning function.  相似文献   

20.
It is known that denaturation of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in low concentrations of GuHCl, around 0.5 M, at 25 degrees C, leads first to a burst phase drop of activity, followed by slow unfolding with further loss of enzyme activity and aggregation. However, GAPDH at higher concentrations does not increase the aggregation in the slow phase as would be expected but decreases both the inactivation and aggregation of the enzyme instead. It seems that GAPDH at high concentrations protects the enzyme against GuHCl-denaturation. This protection is not a general effect of GuHCl binding by increased protein concentration but specific for GAPDH, as either bovine serum albumin or alpha-lactalbumin does not show any protection at similar concentrations. It is proposed that dissociation of tetrameric GAPDH into dimers in the early phase of denaturation in dilute GuHCl is reversible and further unfolding of the dimer to an aggregation prone species is irreversible and rate-limiting for the unfolding process. High concentrations of the enzyme shift the equilibrium towards the tetramer thus decrease the aggregation of GAPDH in dilute GuHCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号