首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of Nitrosomonas europaea on hydroxylamine   总被引:2,自引:0,他引:2  
Abstract Hydroxylamine is an intermediate in the oxidation of ammonia to nitrite, but until now it has not been possible to grow Nitrosomonas europaea on hydroxylamine. This study demonstrates that cells of N. europaea are capable of growing mixotrophically on ammonia and hydroxylamine. The molar growth yield on hydroxylamine (4.74 g mol−1 at a growth rate of 0.03 h−1) was higher than expected. Aerobically growing cells of N. europaea oxidized ammonia to nitrite with little loss of inorganic nitrogen, while significant inorganic nitrogen losses occurred when cells were growing mixotrophically on ammonia and hydroxylamine. In the absence of oxygen, hydroxylamine was oxidized with nitrite as electron acceptor, while nitrous oxide was produced. Anaerobic growth of N. europaea on ammonium, hydroxylamine and nitrite could not be observed at growth rates of 0.03 h−1 and 0.01 h−1.  相似文献   

2.
Hydroxylamine oxidoreductase (HAO) from the ammonia-oxidizing bacterium Nitrosomonas europaea normally catalyzes the four-electron oxidation of hydroxylamine to nitrite, which is the second step in ammonia-dependent respiration. Here we show that, in the presence of methyl viologen monocation radical (MV(red)), HAO can catalyze the reduction of nitric oxide to ammonia. The process is analogous to that catalyzed by cytochrome c nitrite reductase, an enzyme found in some bacteria that use nitrite as a terminal electron acceptor during anaerobic respiration. The availability of a reduction pathway to ammonia is an important factor to consider when designing in vitro studies of HAO, and may also have some physiological relevance. The reduction of nitric oxide to ammonia proceeds in two kinetically distinct steps: nitric oxide is first reduced to hydroxylamine, and then hydroxylamine is reduced to ammonia at a tenfold slower rate. The second step was investigated independently in solutions initially containing hydroxylamine, MV(red), and HAO. Both steps show first-order dependence on nitric oxide and HAO concentrations, and zero-order dependence on MV(red) concentration. The rate constants governing each reduction step were found to have values of (4.7 +/- 0.3) x 10(5) and (2.06 +/- 0.04) x 10(4) M(-1) s(-1), respectively. A second reduction pathway, with second-order dependence on nitric oxide, may become available as the concentration of nitric oxide is increased. Such a pathway might lead to production of nitrous oxide. We estimate a maximum value of (1.5 +/- 0.05) x 10(10) M(-2) s(-1) for the rate constant of the alternative pathway, which is small and suggests that the pathway is not physiologically important.  相似文献   

3.
Nitrosomonas europaea is capable of maintaining an anaerobic metabolism, using pyruvate as an electron donor and nitrite as an electron acceptor; utilization of nitrite depends upon supply of both pyruvate and ammonia. The role of ammonia in this reaction was not determined. N europaea also assimilates CO2 anaerobically into cell material in the presence of nitrite (0.5–1.0 mM), pyruvate and ammonia. This reaction was partially inhibited by nitrite which apparently competed with CO2 for reducing power. Anaerobic nitrite respiration is sensitive to ionophores, FCCP being the most effective.Non-standard-abbreviations TCA trichloroacetic acid - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazon  相似文献   

4.
Theoretical insight into the hydroxylamine oxidoreductase mechanism   总被引:1,自引:0,他引:1  
The multiheme enzyme hydroxylamine oxidoreductase from the autotrophic bacteria Nitrosomonas europaea catalyzes the conversion of hydroxylamine to nitrite, with a complicate arrangement of heme groups in three subunits. As a distinctive feature, the protein has a covalent linkage between a tyrosyl residue of one subunit and a meso carbon atom of the heme active site of another. We studied the influence of this bond in the catalysis from a theoretical perspective through electronic structure calculations at the density functional theory level, starting from the crystal structure of the protein. Geometry optimizations of proposed reaction intermediates were used to calculate the dissociation energy of different nitrogen containing ligands, considering the presence and absence of the meso tyrosyl residue. The results indicate that the tyrosine residue enhances the binding of hydroxylamine, and increases the stability of a FeIIINO intermediate, while behaving indifferently in the FeIINO form. The calculations performed on model systems including neighboring aminoacids revealed the probable formation of a bidentate hydrogen bond between the FeIIIH2O complex and Asp 257, in a high-spin aquo complex as the resting state. Characterization of non-planar heme distortions showed that the meso-substituent induces significant ruffling in the evaluated intermediates.  相似文献   

5.
Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of the kinetics and pH-dependency of ammonia and hydroxylamine oxidation by N. europaea revealed that hydroxylamine oxidation is moderately pH-sensitive, while ammonia oxidation decreases strongly with decreasing pH. Oxidation of these oxogenous substrates results in the generation of higher proton motive force which is mainly composed of a . Hydroxylamine, but not ammonia, is oxidized at pH 5, which leads to the generation of a high proton motive force which drives energy-dependent processes such as ATP-synthesis and secondary transport of amino acids.Endogenoussubstrates can be oxidized between pH 5 to 8 and this results in the generation of a considerable proton motive force which is mainly composed of a . Inhibition of ammonia-mono-oxygenase or cytochrome aa3 does not influence the magnitude of this gradient or the oxygen consumption rate, indicating that endogenous respiration and ammonia oxidation are two distinct systems for energytransduction.The results indicate that the first step in ammonia oxidation is acid sensitive while the subsequent steps can take place and generate a proton motive force at acid pH.  相似文献   

6.
Nitrosomonas europaea is capable of incorporating exogenously supplied amino acids. Studies in whole cells revealed that at least eight amino acids are actively accumulated, probably by the action of three different transport systems, each with high affinity ( molar range) for several amino acids. Evidence for the action of secondary mechanisms of transport was obtained from efflux, counterflow and exchange experiments. More detailed information was obtained from studies in liposomes in which solubilized integral membrane proteins of N. europaea were incorporated. Uptake of l-alanine in these liposomes could be driven by artificially imposed pH gradients and electrical potentials, but not by chemical sodium-ion gradients. These observations indicate that l-alanine is transported by a H+/alanine symport system. The ecological significance of secondary amino acid transport systems in autotrophic ammonium-oxidizing bacteria is discussed.  相似文献   

7.
Incubation of whole cells of the nitrifying bacterium Nitrosomonas europaea with ethylene led to the formation of ethylene oxide. Ethylene oxide production was prevented by inhibitors of ammonium ion oxidation, and showed properties implying that ethylene is a substrate for the ammonia oxidising enzyme, ammonia monooxygenase. Endogenous substrates, hydroxylamine, hydrazine and ammonium ions were compared as sources of reducing power in terms of rates and stoichiometries of ethylene oxidation. The highest rates of ethylene oxide formation (15 mol h-1 mg protein-1) were obtained with hydrazine as donor. The data suggest that at high concentrations of ethylene the rate of oxidation is limited by the rate at which reducing power can be supplied to the monooxygenase, not by an intrinsic V max. Ethylene had an inhibitory effect on the rate of ammonium ion utilisation; an approximate K i of 80 M was derived, but the results deviated from simple competitive behaviour. Measurement of relative rates of ethylene oxide formation and ammonium ion utilization led to a k cat/K m value for ethylene of 1.1 relative to NH 4 + , or 0.04 relative to the true natural substrate, NH3. The effects of higher concentrations of ethylene oxide on oxygen uptake rates were also investigated. The results imply that ethylene oxide is also a substrate for the monooxygenase, but with a much lower affinity than ethylene.  相似文献   

8.
Nitrosomonas europaea, as an ammonia-oxidizing bacterium, has a high Fe requirement and has 90 genes dedicated to Fe acquisition. Under Fe-limiting conditions (0.2 μM Fe), N. europaea was able to assimilate up to 70% of the available Fe in the medium even though it is unable to produce siderophores. Addition of exogenous siderophores to Fe-limited medium increased growth (final cell mass). Fe-limited cells had lower heme and cellular Fe contents, reduced membrane layers, and lower NH3- and NH2OH-dependent O2 consumption activities than Fe-replete cells. Fe acquisition-related proteins, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and enterobactin and diffusion protein OmpC, were expressed to higher levels under Fe limitation, providing biochemical evidence for adaptation of N. europaea to Fe-limited conditions.  相似文献   

9.
The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed β-barrel, they are also referred to as triphosphate tunnel metalloenzymes (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open β-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPP(i)) with high catalytic efficiency in the presence of Mg(2+). These data are supported by native mass spectrometry analysis showing that the enzyme binds PPP(i) (and Mg-PPP(i)) with high affinity (K(d) < 1.5 μm), whereas it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat stability, alkaline pH optimum, and inhibition by Ca(2+) and Zn(2+) ions. We suggest a catalytic mechanism involving a catalytic dyad formed by Lys-52 and Tyr-28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity.  相似文献   

10.
The soil nitrifying bacterium Nitrosomonas europaea has shown the ability to transform cometabolically naphthalene as well as other 2- and 3-ringed polycyclic aromatic hydrocarbons (PAHs) to more oxidized products. All of the observed enzymatic reactions were inhibited by acetylene, a selective inhibitor of ammonia monooxygenase (AMO). A strong inhibitory effect of naphthalene on ammonia oxidation by N. europaea was observed. Naphthalene was readily oxidized by N. europaea and 2-naphthol was detected as a major product (85%) of naphthalene oxidation. The maximum naphthol production rate was 1.65 nmole/mg protein-min in the presence of 240 M naphthalene and 10 mM NH4 +. Our results demonstrate that the oxidation between ammonia and naphthalene showed a partial competitive inhibition. The relative ratio of naphthalene and ammonia oxidation, depending on naphthalene concentrations, demonstrated that the naphthalene was oxidized 2200-fold slower than ammonia at lower concentration of naphthalene (15 M) whereas naphthalene was oxidized only 100-fold slower than ammonia oxidation. NH4 +- and N2H4-dependent O2 uptake measurement demonstrated irreversible inhibitory effects of the naphthalene and subsequent oxidation products on AMO and HAO activity.  相似文献   

11.
Chemolithoautotrophically growing cells of Nitrosomonas europaea quantitatively oxidized ammonia to nitrite under aerobic conditions with no loss of inorganic nitrogen. Significant inorganic nitrogen losses occurred when cells were growing mixotrophically with ammonium, pyruvate, yeast extract and peptone. Under oxygen limitation the nitrogen losses were even higher. In the absence of oxygen pyruvate was metabolized slowly while nitrite was consumed concomitantly. Nitrogen losses were due to the production of nitric oxide and nitrous oxide. In mixed cultures of Nitrosomonas and Nitrobacter, strong inhibition of nitrite oxidation was reproducibly measured. NO and ammonium were not inhibitory to Nitrobacter. First evidence is given that hydroxylamine, the intermediate of the Nitrosomonas monooxygenase-reaction, is formed. 0.2 to 1.7 M NH2OH were produced by mixotrophically growing cells of Nitrosomonas and Nitrosovibrio. Hydroxylamine was both a selective inhibitory agent to Nitrobacter cells and a strong reductant which reduced nitrite to NO and N2O. It is discussed whether chemodenitrification or denitrification is the most abundant process for NO and N2O production of Nitrosomonas.  相似文献   

12.
Chemolithotrophic nitrifying bacteria are dependent on the presence of oxygen for the oxidation of ammonium via nitrite to nitrate. The success of nitrification in oxygen-limited environments such as waterlogged soils, will largely depend on the oxygen sequestering abilities of both ammonium- and nitrite-oxidizing bacteria. In this paper the oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter winogradskyi serotype agilis were determined with cells grown in mixed culture in chemostats at different growth rates and oxygen tensions.Reduction of oxygen tension in the culture repressed the oxidation of nitrite before the oxidation of ammonium was affected and hence nitrite accumulated. K m values found were within the range of 1–15 and 22–166 M O2 for the ammonium- and nitrite-oxidizing cells, respectively, always with the lowest values for the N. europaea cells. Reduction of the oxygen tension in the culture lowered the half saturation constant K m for oxygen of both species. On the other hand, the maximal oxygen consumption rates were reduced at lower oxygen levels especially at 0 kPa. The specific affinity for oxygen indicated by the V max/K m ratio, was higher for cells of N. europaea than for N. winogradskyi under all conditions studied. Possible consequences of the observed differences in specific affinities for oxygen of ammonium-and nitrite-oxidizing bacteria are discussed with respect to the behaviour of these organisms in oxygen-limited environments.  相似文献   

13.
Chemolithotrophic ammonium- and nitrite-oxidizing bacteria are dependent on the presence of oxygen for the production of nitrite and nitrate, respectively. In oxygen-limited environments, they have to compete with each other as well as with other organotrophic bacteria for the available oxygen. The outcome of the competition will be determined by their specific affinities for oxygen as well as by their population sizes. The effect of mixotrophic growth by the nitrite-oxidizing Nitrobacter hamburgensis on the competition for limiting amounts of oxygen was studied in mixed continuous culture experiments with the ammonium-oxidizing Nitrosomonas europaea at different levels of oxygen concentrations.The specific affinity for oxygen of N. europaea was in general higher than of N. hamburgensis. In transient state experiments, when oxic conditions were switched to anoxic, N. hamburgensis was washed out and nitrite accumulated. However, grown at low oxygen concentration, the specific affinity for oxygen of N. hamburgensis increased and became as great as that of N. europaea. Due to its larger population size, the nitrite-oxidizing bacterium became the better competitor for oxygen and ammonium accumulated in the fermentor. It is suggested that continuously oxygen-limited environments present a suitable ecological niche for the nitrite-oxidizing N. hamburgensis.  相似文献   

14.
Extracts of spinach, maize and barley contain an enzyme which catalyses the formation of hydrogen cyanide from glyoxylate and hydroxylamine. The enzyme is dependent upon ADP and a divalent cation such as manganese. Glyoxylicacid oxime is a poor substrate for the enzyme. Carbon dioxide is another product of the reaction and is probably produced in 1:1 stoichiometry with hydrogen cyanide. The possible relationship of this enzyme to the regulation of nitrate reduction is discussed.  相似文献   

15.
The uptake of ammonia and O2 by washed cells of Nitrosomonas has been followed simultaneously and continuously using electrode techniques. The stoichiometry of NH 4 + oxidation, O2 uptake and NO 2 - production was 1 : 1.5 : 1.0 and for NH2OH oxidation a ratio of 1 for O2 : NO 2 - . A variety of inhibitors of electron transport and metals as well as uncouplers restricted ammonia uptake more markedly than O2 utilization. There is good evidence for the involvement of copper in the NH 4 + uptake process.A quinacrine fluorescence technique has been used to study the proton extrusion by washed cells on adding NH4Cl and NH2OH respectively as substrates. The uptake of NH 4 + was followed by the extrusion of H+ and this process was depressed by those inhibitors which were also effective in the electrode experiments. A requirement for copper is also established for the translocation of protons into the medium, resulting from the uptake of NH 4 + by cells.Abbreviations mCCCP carbonyl cyanide m-chlorophenylhydrazone - DBP 2,4 dibromophenol - DCCD N-N-dicyclohexylcarbodimide - DIECA Sodium diethyldithiocarbamate - DNP 2,4 dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - NBD chloride 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole - N-serve 2-chloro-6-trichloromethyl-pyridine - PCP pentachlorophenol - 2-TMP 2-trichloromethyl-pyridine - TPB tetraphenylboron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone - KSCN Potassium thiocyanate  相似文献   

16.
Metabolism of ammonia (NH3) and hydroxylamine (NH2OH) by wild-type and a nitrite reductase (nirK) deficient mutant of Nitrosomonas europaea was investigated to clarify the role of NirK in the NH3 oxidation pathway. NirK-deficient N. europaea grew more slowly, consumed less NH3, had a lower rate of nitrite (NO2 ) production, and a significantly higher rate of nitrous oxide (N2O) production than the wild-type when incubated with NH3 under high O2 tension. In incubations with NH3 under low O2 tension, NirK-deficient N. europaea grew more slowly, but had only modest differences in NH3 oxidation and product formation rates relative to the wild-type. In contrast, the nirK mutant oxidized NH2OH to NO2 at consistently slower rates than the wild-type, especially under low O2 tension, and lost a significant pool of NH2OH–N to products other than NO2 and N2O. The rate of N2O production by the nirK mutant was ca. three times higher than the wild-type during hydrazine-dependent NO2 reduction under both high and low O2 tension. Together, the results indicate that NirK activity supports growth of N. europaea by supporting the oxidation of NH3 to NO2 via NH2OH, and stimulation of hydrazine-dependent NO2 reduction by NirK-deficient N. europaea indicated the presence of an alternative, enzymatic pathway for N2O production.  相似文献   

17.
18.
A tungsten-containing aldehyde:ferredoxin oxidoreductase (AOR) has been purified to homogeneity from Pyrobaculum aerophilum. The N-terminal sequence of the isolated enzyme matches a single open reading frame in the genome. Metal analysis and electron paramagnetic resonance (EPR) spectroscopy indicate that the P. aerophilum AOR contains one tungsten center and one [4Fe-4S]2+/1+ cluster per 68-kDa monomer. Native AOR is a homodimer. EPR spectroscopy of the purified enzyme that has been reduced with the substrate crotonaldehyde revealed a W(V) species with gzyx values of 1.952, 1.918, 1.872. The substrate-reduced AOR also contains a [4Fe-4S]1+ cluster with S=3/2 and zero field splitting parameters D=7.5 cm–1 and E/D=0.22. Molybdenum was absent from the enzyme preparation. The P. aerophilum AOR lacks the amino acid sequence motif indicative for binding of mononuclear iron that is typically found in other AORs. Furthermore, the P. aerophilum AOR utilizes a 7Fe ferredoxin as the putative physiological redox partner, instead of a 4Fe ferredoxin as in Pyrococcus furiosus. This 7Fe ferredoxin has been purified from P. aerophilum, and the amino acid sequence has been identified using mass spectrometry. Direct electrochemistry of the ferredoxin showed two one-electron transitions, at –306 and –445 mV. In the presence of 55 M ferredoxin the AOR activity is 17% of the activity obtained with 1 mM benzyl viologen as an electron acceptor.  相似文献   

19.
The pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum was purified to homogeneity and partially characterized. A 9.2-fold purification was achieved in a three step purification procedure: ammonium sulfate fractionation, chromatography on Phenyl Sepharose and on Procion Blue H-EGN12. The pure enzyme exhibited a specfic activity of 25 U/mg of protein. Homogeneity of the pyruvate-ferredoxin oxidoreductase was confirmed by native polyacrylamide gel electrophoresis and sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight was determined to be 123,000/monomer. The subunit composition of the native enzyme could not be determined because of the instability of the pure enzyme. The pyruvate-ferredoxin oxidoreductase is sensitive to oxygen and dilution during purification. The dilution inactivation could be partially overcome by the addition of 300 M coenzyme A or 50% ethyleneglycol. A thiamine pyrophosphate content of 0.39 mol per mol of enzyme monomer was found, the iron and sulfur content was 4.23 and 0.91, respectively. The pH-optimum was at pH 7.5 and the temperature optimum was at 60°C. Kinetic constants were measured in the forward reaction. The apparent K m for pyruvate and coenzyme A were 322 M and 3.7 M, respectively. With 2-ketobutyrate the pyruvate-ferredoxin oxidoreductase showed 12.5% of the activity compared to pyruvate. No activity was found with 2-ketoglutarate. Ferredoxin from Clostridium pasteurianum could be used as physiological electron acceptor.Non-standard abbreviations NAD(H) nicotinamide adenine dinucleotide (reduced) - NADP(H) nicotinamide adenine dinucleotide phosphate (reduced) - DTE dithioerythritol - PMS phenazine methosulfate - NBT nitro blue tetrazolium chloride - DMSO dimethyl sulfoxide - DCPIP dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl-tetrazolium bromide - TTC triphenyltetrazolium chloride - FAD flavin adenine dinucleotide - FMN flavin mononucleotide  相似文献   

20.
Abstract: In the transmitter-gated ion channel class of receptors, the members of which are all believed to be heterooligomers, the number and arrangement of the subunits are only known with any certainty for the nicotinic acetylcholine receptor from Torpedo electric fish. That receptor has been shown to possess a pentameric rosette structure, with five homologous subunits (α2βγδ) arranged to enclose the central ion channel. The data were obtained by electron image analysis of two-dimensional receptor arrays, which form as a consequence of that receptor's exceptionally high abundance in the Torpedo membranes and are therefore not attainable for other receptors. We have applied another direct approach to determine the quaternary structure of native ionotropic GABA receptors. We have purified those receptors from porcine brain cortex and analysed the rotational symmetry of isolated receptors visualized by electron microscopy. The results show the receptor to have a pentameric structure with a central water-filled pore, which can now be said to be characteristic of the entire superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号