首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo‐ or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time‐points post‐injury were compared to a GSE5413 data set from two other trauma models. Third day post‐injury, when inflammatory cells invaded, genes associated with cell‐matrix interactions and migration were up‐regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down‐regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up‐regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up‐regulated. Gene up‐regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up‐regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.  相似文献   

2.

Introduction

Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA.

Methods

CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1.

Results

Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice.

Conclusions

Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.  相似文献   

3.
Because angiogenesis plays a major role in the perpetuation of inflammatory arthritis, we explored a method for selectively targeting and destroying new synovial blood vessels. Mice with collagen-induced arthritis were injected intravenously with phage expressing an RGD motif. In addition, the RGD peptide (RGD-4C) was covalently linked to a proapoptotic heptapeptide dimer, D(KLAKLAK)2, and was systemically administered to mice with collagen-induced arthritis. A phage displaying an RGD-containing cyclic peptide (RGD-4C) that binds selectively to the αvβ3 and αvβ5 integrins accumulated in inflamed synovium but not in normal synovium. Homing of RGD-4C phage to inflamed synovium was inhibited by co-administration of soluble RGD-4C. Intravenous injections of the RGD-4C–D(KLAKLAK)2 chimeric peptide significantly decreased clinical arthritis and increased apoptosis of synovial blood vessels, whereas treatment with vehicle or uncoupled mixture of the RGD-4C and the untargeted proapoptotic peptide had no effect. Targeted apoptosis of synovial neovasculature can induce apoptosis and suppress clinical arthritis. This form of therapy has potential utility in the treatment of inflammatory arthritis.  相似文献   

4.
Nonbiological therapeutics are frequently used for the treatment of patients with rheumatoid arthritis (RA). Because the mechanisms of action of these therapeutics are unclear, the authors aimed to elucidate the molecular effects of typical antirheumatic drugs on the expression profile of RA-related genes expressed in activated synovial fibroblasts. For reasons of standardization and comparability, immortalized synovial fibroblasts derived from RA (RASF) and normal donors (NDSF) were treated with methotrexate, prednisolone, or diclofenac and used for gene expression profiling with oligonucleotide microarrays. The cytotoxicity of the antirheumatic drugs was tested in different concentrations by MTS tetrazolium assay. Genes that were differentially expressed in RASF compared to NDSF and reverted by treatment with antirheumatic drugs were verified by semiquantitative polymerase chain reaction and by chemiluminescent enzyme immunoassay. Treatment with methotrexate resulted in the reversion of the RA-related expression profile of genes associated with growth and apoptosis including insulin-like growth factor binding protein 3, retinoic acid induced 3, and caveolin 2 as well as in the re-expression of the cell adhesion molecule integrin alpha6. Prednisolone reverted the RA-related profile of genes that are known from inflammation and suppressed interleukins 1beta and 8. Low or high doses of diclofenac had no effect on the expression profile of genes related to RA in synovial fibroblasts. These data give the first insight into the mechanisms of action of common antirheumatic drugs used for the treatment of arthritides. Synovial fibroblasts reflect the disease-related pathophysiology and are useful tools for screening putative antirheumatic compounds.  相似文献   

5.
Rats with collagen-induced arthritis (CIA) were necropsied on 14 occasions from 4 days after induction to 27 days after disease onset to evaluate the kinetics of local (joint protein extracts) and systemic (serum) levels of inflammatory and pro-erosive factors. Systemic increases in α1 acid glycoprotein and KC/GRO together with systemic and local enrichment of interleukin (IL)-1β, IL-6, CCL2, transforming growth factor (TGF)-β and elevated IL-1α and IL-18 in joint extracts preceded the onset of clinical disease. Systemic upregulation of IL-1β, IL-6, TGF-β CCL2, RANKL and prostaglandin E2 (PGE2) during acute and/or chronic CIA coincided with systemic leukocytosis and a CD4+ T-cell increase in blood and spleen. In contrast, progression of joint erosions during clinical CIA was associated with intra-articular increases in IL-1α/β, IL-6, IL-18, CCL2, KC/GRO and RANKL, and a dramatic decline in osteoprotegerin (OPG). These data indicate that systemic and local events in inflammatory arthritis can be discrete processes, driven by multiple cellular and humoral mediators with distinct temporospatial profiles.  相似文献   

6.
Emerin expression at the early stages of myogenic differentiation   总被引:3,自引:0,他引:3  
Emerin is an ubiquitous protein localized at the nuclear membrane of most cell types including muscle cells. The protein is absent in most patients affected by the X-linked form of Emery-Dreifuss muscular dystrophy, a disease characterized by slowly progressive muscle wasting and weakness, early contractures of the elbows, Achilles tendons, and post-cervical muscles, and cardiomyopathy. Besides the nuclear localization, emerin cytoplasmic distribution has been suggested in several cell types. We studied the expression and the subcellular distribution of emerin in mouse cultured C2C12 myoblasts and in primary cultures of human myoblasts induced to differentiate or spontaneously differentiating in the culture medium. In differentiating myoblasts transiently transfected with a cDNA encoding the complete emerin sequence, the protein localized at the nuclear rim of all transfected cells and also in the cytoplasm of some myoblasts and myotubes. Cytoplasmic emerin was also observed in detergent-treated myotubes, as determined by electron microscopy observation. Both immunofluorescence and biochemical analysis showed, that upon differentiation of C2C12 cells, emerin expression was decreased in the resting myoblasts but the protein was highly represented in the developing myotubes at the early stage of cell fusion. Labeling with specific markers of myogenesis such as troponin-T and myogenin permitted the correlation of increased emerin expression with the onset of muscle differentiation. These data suggest a role for emerin during proliferation of activated satellite cells and at the early stages of differentiation.  相似文献   

7.
8.

Introduction

Similar to matrix metalloproteinases, glycosidases also play a major role in cartilage degradation. Carbohydrate cleavage products, generated by these latter enzymes, are released from degrading cartilage during arthritis. Some of the cleavage products (such as hyaluronate oligosaccharides) have been shown to bind to Toll-like receptors and provide endogenous danger signals, while others (like N-acetyl glucosamine) are reported to have chondroprotective functions. In the current study for the first time we systematically investigated the expression of glycosidases within the joints.

Methods

Expressions of β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, sperm adhesion molecule 1 and klotho genes were measured in synovial fibroblasts and synovial membrane samples of patients with rheumatoid arthritis and osteoarthritis by real-time PCR. β-D-Glucuronidase, β-D-glucosaminidase and β-D-galactosaminidase activities were characterized using chromogenic or fluorogenic substrates. Synovial fibroblast-derived microvesicles were also tested for glycosidase activity.

Results

According to our data, β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, and klotho are expressed in the synovial membrane. Hexosaminidase is the major glycosidase expressed within the joints, and it is primarily produced by synovial fibroblasts. HexA subunit gene, one of the two genes encoding for the alpha or the beta chains of hexosaminidase, was characterized by the strongest gene expression. It was followed by the expression of HexB subunit gene and the β-D-glucuronidase gene, while the expression of hyaluronidase-1 gene and the klotho gene was rather low in both synovial fibroblasts and synovial membrane samples. Tumor growth factor-β1 profoundly downregulated glycosidase expression in both rheumatoid arthritis and osteoarthritis derived synovial fibroblasts. In addition, expression of cartilage-degrading glycosidases was moderately downregulated by proinflammatory cytokines including TNFα, IL-1β and IL-17.

Conclusions

According to our present data, glycosidases expressed by synovial membranes and synovial fibroblasts are under negative regulation by some locally expressed cytokines both in rheumatoid arthritis and osteoarthritis. This does not exclude the possibility that these enzymes may contribute significantly to cartilage degradation in both joint diseases if acting in collaboration with the differentially upregulated proteases to deplete cartilage in glycosaminoglycans.  相似文献   

9.
Using the murine model of type II collagen-induced arthritis (CIA), we studied its evolution over time by histopathological, immunohistochemical and clinical evaluations. The first clinical symptoms appeared 28 days post-inoculation (dpi), with bovine type II collagen, with an average arthritic index of 1.00 +/- 0.48 corresponding to erythema of the articulation. The disease progressed, and by 70 dpi showed an average arthritic index of 3.83 +/- 0.27 corresponding to edema and maximum deformation, with ankylosis. Computed morphometry demonstrated that, in comparison to controls, the induction of CIA, produces a significant and increasing accumulation of inflammatory cells, fibrosis (p < 0.0001) and cartilage destruction (p = 0.0029). Likewise, the area of von Willebrand factor (vWF) immunostaining, as an indicator of endothelial proliferation, increased significantly from 28 dpi (p < 0.0001), in CIA mice compared to controls. However, the effective synovial vascularization, calculated as the synovial vascular bed area index, significantly increased by 42 dpi (p = 0.0014). This indicates that the activation and proliferation of endothelium becomes significant before an effective vascularization area is formed. The apoptosis index was also an earlier indicator of cartilage damage, becoming significant from 28 dpi in comparison to controls (p < 0.0001). Finally, it was observed that the increase in the arthritic index showed a strong correlation with the increase in both angiogenesis (r = 0.95; p = 0.0021) and apoptosis (r = 0.90; p = 0.0015). In conclusion, a robust correlation between synovial membrane inflammation, angiogenesis and chondrocyte apoptosis, with respect to the increase in the clinical severity of CIA, has been demonstrated by a quantitative computer-assisted immunomorphometric analysis.  相似文献   

10.
We have examined the expression and function of the angiogenic factor, vascular endothelial growth factor (VEGF) during the evolution of type II collagen-induced arthritis (CIA). Biologically active VEGF was expressed along a time course that paralleled the expression of two specific VEGF receptors, Flk-1 and Flt-1, and the progression of joint disease. Moreover, levels of VEGF expression correlated with the degree of neovascularization, as defined by vWF levels, and arthritis severity. Macrophage- and fibroblast-like cells, which infiltrated inflamed sites and were then activated by other inflammatory mediators, are probably important sources of VEGF and may thus regulate angiogenesis during the development of CIA. Administration of anti-VEGF antiserum to CIA mice before the onset of arthritis delayed the onset, reduced the severity, and diminished the vWF content of arthritic joints. By contrast, administration of anti-VEGF antiserum after the onset of the disease had no effect on the progression or ultimate severity of the arthritis. These data suggest that VEGF plays a crucial role during an early stage of arthritis development, affecting both neovascularization and the progression of experimentally induced synovitis.  相似文献   

11.
The E3 ubiquitin ligase synoviolin (SYVN1) functions as an anti-apoptotic factor that is responsible for the outgrowth of synovial cells during the development of rheumatoid arthritis. The molecular mechanisms underlying SYVN1 regulation of cell death are largely unknown. Here, we report that elevated SYVN1 expression correlates with decreased levels of the protein inositol-requiring enzyme 1 (IRE1)-a pro-apoptotic factor in the endoplasmic reticulum (ER)-stress-induced apoptosis pathway-in synovial fibroblasts from mice with collagen-induced arthritis (CIA). SYVN1 interacts with and catalyses IRE1 ubiquitination and consequently promotes IRE1 degradation. Suppression of SYVN1 expression in synovial fibroblasts from CIA mice restores IRE1 protein expression and reverses the resistance of ER-stress-induced apoptosis of CIA synovial fibroblasts. These results show that SYVN1 causes the overgrowth of synovial cells by degrading IRE1, and therefore antagonizes ER-stress-induced cell death.  相似文献   

12.
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.  相似文献   

13.
T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.  相似文献   

14.
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.  相似文献   

15.
Leukotriene B4 acts through its receptors, BLT(1) and BLT(2), however, their expression in rheumatoid arthritis is unknown. In this experiment, BLT(1) and BLT(2) mRNA expressions in the synovium of rats with collagen-induced arthritis (CIA) at days 1, 3, 7 and 14 after CIA onset were analyzed by RT-PCR. The expression of two immunological and inflammatory factors, S100A8 and S100A9, in the synovium of the arthritic rats was also determined at the indicated time. At d14, the differential expressions of BLT(1) and BLT(2) in the synovium, spleen, peripheral blood mononuclear cells (PBMC) and thymus of CIA rats were analyzed. The results showed that, in the synovium of the arthritic rats, the BLT(1) mRNA expression increased after CIA onset, reached the highest value between d1 and d3, and declined afterwards while the BLT(2) expression increased with time and reached its peak at d14. Both S100A8 and S100A9 expression reached the peak levels between d1 and d3, and decreased to lower levels between d7 and d14. For the analyzed tissues from CIA rats at d14, BLT(1) mRNA was expressed in the thymus with the highest level, followed by the spleen, PBMC and synovium. BLT(2) mRNA was expressed in the thymus the highest as well, but followed by the synovium, spleen and PBMC. Since BLT(1) and BLT(2) play distinct roles during CIA, this study may provide basis for new therapies targeting BLT(1) and BLT(2), respectively, for the treatment of arthritic inflammation at different stages.  相似文献   

16.
17.
18.
OBJECTIVE: To investigate the expression pattern of cell cycle related gene products in active and quiescent Rheumatoid arthritis (RA). METHODS: Synovial tissue from 20 patients with active proliferative RA and 28 patients with RA in remission was immunohistochemically examined for expression of p53, p63, p21, p27, p16, cyclin D1, CDK4, RB, E2F, Ki-67 on tissue microarrays and by DNA flow cytometry for cell cycle phases. RESULTS: Elevated expression of p53 and p27 was found in synovial lining and in stromal cells in proliferative active RA. In the remission stage this finding was confined to the synovial lining. Most of the cells were in the G0-phase. Ki-67 proliferation index was maximum 10% in synovial cells. CONCLUSION: The p53 pathway is activated in synovial cells in active RA as well as in quiescent stage of disease. Differences in the spatial expression pattern of proteins involved in the p53 pathway in RA in remission compared to actively proliferating RA reflect the phasic nature of the disease and support in our opinion the concept of adaptive role of p53 pathway in RA.  相似文献   

19.
Activating Fc gamma receptors (FcgammaRs) have been identified as having important roles in the inflammatory joint reaction in rheumatoid arthritis (RA) and murine models of arthritis. However, the role of the inhibitory FcgammaRIIb in the regulation of the synovial inflammation in RA is less known. Here we have investigated synovial tissue from RA patients using a novel monoclonal antibody (GB3) specific for the FcgammaRIIb isoform. FcgammaRIIb was abundantly expressed in synovia of RA patients, in sharp contrast to the absence or weak staining of FcgammaRIIb in synovial biopsies from healthy volunteers. In addition, the expression of FcgammaRI, FcgammaRII and FcgammaRIII was analyzed in synovia obtained from early and late stages of RA. Compared with healthy synovia, which expressed FcgammaRII, FcgammaRIII but not FcgammaRI, all activating FcgammaRs were expressed and significantly up-regulated in RA, regardless of disease duration. Macrophages were one of the major cell types in the RA synovium expressing FcgammaRIIb and the activating FcgammaRs. Anti-inflammatory treatment with glucocorticoids reduced FcgammaR expression in arthritic joints, particularly that of FcgammaRI. This study demonstrates for the first time that RA patients do not fail to up-regulate FcgammaRIIb upon synovial inflammation, but suggests that the balance between expression of the inhibitory FcgammaRIIb and activating FcgammaRs may be in favour of the latter throughout the disease course. Anti-inflammatory drugs that target activating FcgammaRs may represent valuable therapeutics in this disease.  相似文献   

20.
Morbid obesity is the result of massive expansion of white adipose tissue (WAT) and requires recruitment of adipocyte precursor cells and their supporting infrastructure. To characterize the change in the expression profile of the preexisting WAT at the start of obesity, when adipocyte hypertrophy is present but hyperplasia is still minimal, we employed a cDNA subtraction screen for genes differentially expressed in epididymal fat pads harvested 1 wk after the start of a 60% fat diet. Ninety-six genes were upregulated by at least 50% above the WAT of control rats receiving a 4% fat diet. Of these genes, 30 had not previously been identified. Sixteen of the 96 genes, including leptin, adipocyte complement-related protein 30 kDa, and resistin, were predicted to encode a signal peptide. Ten of the 16 had been previously identified in other tissues and implicated in cell growth, proliferation, differentiation, cell cycle control, and angiogenesis. One was a novel gene. Twenty-nine novel fragments were identified. Thus, at the onset of high-fat-diet-induced obesity in rats, adipose tissue increases its expression of factors previously implicated in the expansion of nonadipocyte tissues and of several uncharacterized novel factors. The only one of these thus far characterized functionally was found to promote lipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号