首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the intracellular calcium concentration induced by activation of neurons of the isolated intact rat superior cervical ganglion were recorded. It is concluded that stimulation within the physiological range of frequencies can effectively increase the intracellular calcium concentration in these neurons. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 400–402, July–October, 2007.  相似文献   

2.
The effect of extracellular ATP on intracellular free Ca2+ was characterized in quin2-loaded parotid acinar cells. ATP specifically increased the intracellular Ca2+ concentration six-fold above a basal level of 180 nM. Of other purine nucleotides tested, only adenylylthiodiphosphate (ATP gamma S) had significant activity. ATP and the muscarinic agonist carbachol increased intracellular Ca2+ even in the absence of extracellular Ca2+. Both agonists stimulated K+ release, which was followed by reuptake of K+, even in the continued presence of agonist. In the absence of Mg2+, ATP was much more potent but no more efficacious in elevating intracellular Ca2+, suggesting that ATP4- is the active species. The effect of ATP was reversed by removal with hexokinase, arguing against a role for an active contaminant of ATP and against a non-specific permeabilizing effect of extracellular ATP. Lactate dehydrogenase release was unaffected by a maximally effective concentration of ATP. These observations are consistent with a possible neurotransmitter role for ATP in the rat parotid gland.  相似文献   

3.
Adenosine-5'-triphosphate (ATP) released from damaged cells can affect functions of adjacent cells. Injuries of peripheral tissue stimulate nerves, but effect of ATP on the nerve bundles is still speculative. Peripheral nerves are surrounded by perineurium, therefore the response of perineurium may be a first event of nerve stimulation at tissue injuries. The aim of the present study is to clarify whether the perineurium responds to ATP. To this end, we analyzed the dynamics of the intracellular calcium concentration ([Ca2+]i) of perineurial cells by confocal microscopy. ATP induced a [Ca2+]i increase of perineurial cells. Ca2+ channel blockers and removing of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. This indicated that the [Ca2+]i increase was due to an influx of extracellular Ca2+. Adenosine-5'-diphosphate also elicited an increase of [Ca2+]i, but P1 receptor agonists had few effects on [Ca2+]i dynamics. Suramin (an antagonist of P2X and P2Y receptors) totally inhibited ATP-induced [Ca2+]i dynamics, but reactive blue 2 (a P2Y receptor antagonist) did not. Uridine-5'-triphosphate (a P2Y receptor agonist) induced no significant change in [Ca2+]i, but alpha,beta-methylene ATP (a P2X receptor agonist) caused a [Ca2+]i increase. In conclusion, perineurial cells respond to extracellular ATP mainly via P2X receptors.  相似文献   

4.
Saino T  Matsuura M  Satoh YI 《Cell calcium》2002,32(3):153-163
Adenosine 5'-triphosphate (ATP), when released from neuronal and non-neuronal tissues, interacts with cell surface receptors produces a broad range of physiological responses. The goal of the present study was to examine the issue of whether vascular smooth muscle cells respond to ATP. To this end, the dynamics of the intracellular concentration of calcium ions ([Ca(2+)](i)) in smooth muscle cells in testicular and cerebral arterioles was examined by laser scanning confocal microscopy. ATP produced an increase in [Ca(2+)](i) in arteriole smooth muscle cells. While P1 purinoceptor agonists had no effect on this process, P2 purinoceptor agonists induced a [Ca(2+)](i) increase and a P2 purinoceptor antagonist, suramin, completely inhibited ATP-induced [Ca(2+)](i) dynamics in both arteriole smooth muscle cells.In testicular arterioles, Ca(2+) channel blockers and the removal of extracellular Ca(2+), but not thapsigargin pretreatment, abolished the ATP-induced [Ca(2+)](i) dynamics. In contrast, Ca(2+) channel blockers and the removal of extracellular Ca(2+) did not completely inhibit ATP-induced [Ca(2+)](i) dynamics in cerebral arterioles. Uridine 5'-triphosphate caused an increase in [Ca(2+)](i) only in cerebral arterioles and alpha,beta-methylene ATP caused an increase in [Ca(2+)](i) in both testicular and cerebral arterioles.We conclude that testicular arteriole smooth muscle cells respond to extracellular ATP via P2X purinoceptors and that cerebral arteriole smooth muscle cells respond via P2X and P2Y purinoceptors.  相似文献   

5.
Using a refined patch clamp technique, a study was made of single calcium channels of spinal ganglia neurons on a cell-attached membrane site in newborn rats; these convey the basic (high threshold) component of calcium current. Findings show that currents carried by calcium ions at a concentration of 60 mM in the recording pipet changes from 0.58±0.05 to 0.43±0.05 pA with a change in potential of 20 mV. This corresponds to a channel conductance of 7±0.5 pS. The distribution of open time was monoexponential with a time constant of about 0.75 msec, independent of membrane potential. Distribution of closed time approached a biexponential time course. The fast component (0.8 msec) was voltage-dependent, while the slow component decreased from 22 to 4 msec when depolarization increased by 20 mV. Using experimentally obtained time parameters which describe single calcium channel function, and assuming a three-tier model of the channel, the numerical values of the constants of transition rates between individual states were determined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 673–682, September–October, 1985.  相似文献   

6.
Summary In the rat superior cervical and coeliac-mesenteric ganglia we have observed three types of small granulated (SG) cell: Type I cells are characterised by membrane-bounded cytoplasmic granules with a core of variable, moderate to low electron-density, whose limiting membranes are rounded in profile ranging from 50–150 nm in diameter. Type II SG cells contain numerous highly electron-dense, polymorphic cytoplasmic granules ranging from 100–300 nm in diameter. The haloes of Type II cell granules are variable in shape, and the core is often eccentrically located or fragmented. Type III SG cells contain membrane-bounded granules with a core of variable moderate to low electron-density. In profile these granules appear oblong or circular with average dimensions of 170 × 50 nm. All three SG cell types receive cholinergic-type pre-ganglionic terminals whose afferent nature is confirmed by their degeneration following pre-ganglionic neurectomy. Only Type I cells have been observed to donate efferent synapses to dendrites of principal ganglionic neurones and are thus interneuronal.This work was in part supported by a grant from the Medical Research Council. We wish to thank Mr. T.T. Lee for valuable technical assistance and Mr. P.F. Hire and Mr. K. Twohigg for illustrative help  相似文献   

7.
The lipid content and composition of rat superior cervical ganglia containing sympathetic motor neurons and nodose ganglia containing parasympathetic sensory neurons were studied for the first time to elucidate the mechanism of the different effects of exogenous gangliosides on these neurons in the culture medium. The ganglioside content of the superior cervical ganglia was almost 3-times that of the nodose ganglia. Although both ganglia contained GM3, GD3, GD1b and GT1b as major gangliosides, the nodose ganglia additionally contained a significant amount of sialosyllactoneotetraosylceramide LM1 (10% of total sialic acids). Contrasting with nodose ganglia, vagus fiber and dorsal root ganglia of rats, superior cervical ganglia had a higher content of sulfatide than galactosylceramide. The phospholipid content was lower in superior cervical ganglia than in nodose ganglia. Superior cervical ganglia contained less ethanolamine plasmalogen and more phosphatidylcholine than nodose ganglia. Sphingomyelin in superior cervical ganglia contained mainly medium-chain fatty acids, while that in nodose ganglia contained mainly longer-chain fatty acids. Differences in the fatty acid composition of glycerophospholipids were also observed. The results indicate that the properties of neuronal cell membranes from superior cervical ganglia and nodose ganglia are quite different, and that the differences may reflect the physiological roles of these ganglia.  相似文献   

8.
9.
10.
Abstract— —The biosynthesis of immunoreactive prostaglandin E (iPGE) was examined in homogenates of rat superior cervical ganglia and in isolated intact ganglia incubated in vitro. Ganglia homogenates produced iPGE from exogenous arachidonic acid. Prostaglandin synthesis by the homogenates was inhibited by the prostaglandin synthetase inhibitors, eicosatetraynoic acid, indomethacin and sodium meclofenamate and was stimulated by norepinephrine and dopamine. Whole ganglia incubated in Krebs-bicarbonate solution also synthesized iPGE which was released into the incubation bath in a time-dependent manner. As observed in the homogenates, norepinephrine and dopamine enhanced iPGE formation by the intact tissue. Phospholipase A also stimulated iPGE synthesis by the whole ganglia. The effect of phospholipase A was antagonized by dibutyryl cyclic AMP but not by dibutyryl cyclic GMP. The results suggest that neuronally synthesized prostaglandins may be available for modulating adrenergic neuron function and that endogenous neuronal constituents such as catecholamines and cyclic AMP may influence the activity of the prostaglandin synthetase system.  相似文献   

11.
12.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

13.
14.
15.
Muscarinic receptors were assessed by [3H]-quinuclidinyl benzilate (QNB) binding in 900 xg supernatants of bovine superior cervical ganglia (SCG). At 30 degrees C half maximal binding was reached within 3 min and equilibrium within 30 min. Scatchard analysis revealed a single population of binding sites with dissociation constant (Kd) = 0.15 +/- 0.01 nM and site concentration (Bmax) = 101 +/- 4 fmoles/mg prot. Binding was specific for muscarinic drugs. Incubation of bovine SCG with different hormones (10(-7)M) indicated that LH, TRH and testosterone depressed significantly Bmax, and that prolactin decreased both Kd and Bmax of [3H] -QNB binding. Several other hormones tested (TSH, GH, FSH, LHRH, angiotensin II, bradykinin, melatonin, estradiol, thyroxine and triiodothyronine) did not affect QNB binding. Hormone effects were not due to a direct interference with radioligand binding to membrane. The injection of LH to orchidectomized rats depressed Bmax of SCG QNB binding without changing the Kd. These results suggest that muscarinic cholinergic neurotransmission in SCG may be affected by hormones.  相似文献   

16.
Bupivacaine and levobupivacaine have been shown to be effective in the treatment of pain as local anesthetics, although the mechanisms mediating their antinociceptive actions are still not well understood. The aim of this study was to investigate the effects of bupivacaine and levobupivacaine on intracellular calcium ([Ca2+]i) signaling in cultured rat dorsal root ganglion (DRG) neurons. DRG neuronal cultures loaded with 5?μM Fura-2/AM and [Ca2+]i transients for stimulation with 30?mM KCl (Hi K+) were assessed by using fluorescent ratiometry. DRGs were excited at 340 and 380?nm, emission was recorded at 510?nm, and responses were determined from the change in the 340/380 ratio (basal-peak) for individual DRG neurons. Data were analyzed by using Student’s t-test. Levobupivacaine and bupivacaine attenuated the KCl-evoked [Ca2+]i transients in a reversible manner. [Ca2+]i increase evoked by Hi K+ was significantly reduced to 99.9?±?5.1% (n?=?18) and 62.5?±?4.2% (n?=?15, P?<?0.05) after the application of 5 and 50?µM levobupivacaine, respectively. Bupivacaine also inhibited Hi K+-induced [Ca2+]i responses, reduced to 98.7?±?4.8% (n?=?10) and 69.5?±?4.5% (n?=?9, P?<?0.05) inhibition of fluorescence ratio values of Hi K+-induced responses at 5 and 50?μM, respectively. Our results indicate that bupivacaine and levobupivacaine, with no significant differences between both agents, attenuated KCl-evoked calcium transients in a reversible manner. The inhibition of calcium signals in DRG neurons by levobupivacaine and bupivacaine might contribute to the antinociceptive effects of these local anesthetics.  相似文献   

17.
The addition of nerve growth factor to organ cultures of superior cervical ganglia from immature rats specifically stimulated the incorporation of 32P-orthophosphate into phosphatidylinositol fraction. Equimolar concentrations of other hormones such as insulin, glucagon, thyroxine and growth hormone did not cause any stimulation of the incorporation of 14C-myoinositol into phosphatidylinositol. The stimulation of phosphatidylinositol turnover was observed over a concentration of nerve growth factor ranging from 10?10M to 10?7M. Nerve growth factor specific “inositide effect” was found to be sensitive to nerve growth factor antibody, 2,4-dinitrophenol, a high concentration of bovine growth hormones but not to Actinomycin D. The physiological significance of this finding in relation to nerve growth factor action in this target tissue is discussed.  相似文献   

18.
A systemic examination on the small granule-containing (SGC) cells in rat superior cervical ganglia was conducted by conventional and cytochemical electron microscopy including chromaffin, argentaffin and uranaffin reactions. According to the fine structure of dense cored vesicles (DCVs) in the cytoplasm, three types of small granule-containing (SGC) cells were revealed--Type I: 90-160 nm vesicles with cores of moderate or low electron density; Type II: 130-330 nm vesicles, polymorphic with highly electron dense cores; Type III: elongated vesicles (170 nm x 60 nm) with cores of moderate to low electron density. The majority of SGC cells were the Type I cells (78%) and Type II and III cells made up 13% and 9% of SGC cell population, respectively. Cytochemical results demonstrated that only the Type II cells displayed a positive chromaffin reaction and all three types of SGC cells showed argentaffinity and uranaffinity. The present study is the first to demonstrate the argentaffin reaction at ultrastructural level in SGC cells of sympathetic ganglia. Based on the results of the present study we also concluded that (1) the DCVs of Type II SGC cells contained noradrenaline and (2) biogenic amines and nucleotides (ATPs) coexisted in the DCVs of all three types of SGC cells.  相似文献   

19.
ACh (5.10(-4) M), when applied to isolated ganglion preparations elicited an apparently antidromic discharge in the cervical sympathetic trunk. The intensity of this back-firing was found to be about 10 times lower than that of the postganglionic discharge evoked by ACh in the internal carotid nerve. Both responses however displayed a similar time course consisting mainly of an early and a late component. In the back-firing the early component died out in few seconds, while the late one lasted 20-30 seconds. The two components were cancelled by d-tubocurarine (5.10(-6) M) and atropine (10(-6) M) respectively, suggesting that both nicotinic and muscarinic cholinoceptive sites are involved. In chronically decentralized preparations ACh evoked a clear back-firing response not substantially different from that elicited in normal ganglia. Therefore it is likely that the back-firing phenomenon is not due to antidromic activation of preganglionic fibers. The back-firing observed in the rat superior cervical ganglion was interpreted as being due to activation of sympathetic neurons, known to give rise to recurrent axons in the cervical sympathetic cord.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号