首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation sites of myelin basic protein from bovine brain were determined after phosphorylation with Ca2+-calmodulin-dependent protein kinase. Four phosphorylated peptides were selectively and rapidly separated by reversed-phase high-performance liquid chromatography. Partial sequencing of the phosphorylated peptides by automated Edman degradation revealed that Ca2+-calmodulin-dependent protein kinase phosphorylated serine-16, serine-70, and threonine-95 specifically, as well as serine-115, which is located on the experimental allergic encephalitogenic determinant of the protein. Of the four amino acid sequences determined, two sequences surrounding phosphorylated amino acids, -Lys-Tyr-Leu-Ala-Ser(P)16-Ala- and -Arg-Phe-Ser(P)115-Trp-Gly-, have both sides of each phosphoserine residue occupied by hydrophobic amino acids, and a basic amino acid, arginine or lysine, is located at the position 2 or 4 residues amino-terminal to the phosphoserine residue. In contrast, the two other sequences surrounding phosphorylated amino acids, -Tyr-Gly-Ser(P)70-Leu-Pro-Glu-Lys- and -Ile-Val-Thr(P)95-Pro-Arg-, have a basic amino acid at the position 2 or 4 residues carboxyl-terminal to the phosphoamino acid residue.  相似文献   

2.
Using peptides based on the amino acid sequences surrounding the two histidine residues in histone H4, we have investigated the kinetics of the phosphorylation and dephosphorylation reactions of their histidine residues, when reacted with potassium phosphoramidate, by 1H NMR. We have been able to estimate rate constants for the reactions and have shown that there are differences in the kinetics between the two peptides. The kinetics of hydrolysis of phosphoramidate was measured by 31P NMR and protein histidine phosphatase (PHP) was shown to catalyse the reaction. We have shown that the dephosphorylation of the phosphohistidine of the phosphopeptides is catalysed by PHP. In terms of substrate specificity, there is a small preference for 1-phosphohistidine compared to 3-phosphohistidine, although the rate accelerations for hydrolysis induced by the enzyme were 1100- and 33,333-fold, respectively. The kinetics of both the phosphorylation and dephosphorylation reactions depend on the amino acid sequence surrounding the histidine. PHP shows greater substrate specificity for the peptide whose sequence is similar to that around histidine 18 of histone H4. PHP was unable to catalyse the dephosphorylation of histone H4 that had been phosphorylated with a histone H4 histidine kinase.  相似文献   

3.
The specificity of casein kinase II has been further defined by analyzing the kinetics of phosphorylation reactions using a number of different synthetic peptides as substrates. The best peptide substrates are those in which multiple acidic amino acids are present on both sides of the phosphorylatable serine or threonine. Acidic residues on the NH2-terminal side of the serine (threonine) greatly enhance the kinetic constants but are not absolutely required. Acidic residues on the COOH-terminal side of the serine (threonine) are absolutely required. One position for which the occupation of an acidic residue is especially critical is the position located 3 residues to the COOH terminus of the phosphate acceptor site, although the presence of an acidic amino acid in the positions that are 4 or 5 residues removed may also provide an appropriate structure that will serve as a substrate for the kinase. Aspartate serves as a better amino acid determinant than glutamate. A relatively short sequence of amino acids surrounding the phosphate acceptor site appears to serve as the basis for the specificity of casein kinase II. The peptides in this study were also assayed with casein kinase I and the casein kinase from the mammary gland so that the specificities of these kinases could be compared to that of casein kinase II.  相似文献   

4.
The p21-activated kinase, Pak, has recently been shown to phosphorylate Raf-1 on serine 338 (S338), a critical regulatory residue. The specificity requirements for Pak-mediated phosphorylation of S338 were examined by substitution analysis of Raf-1 peptides and conserved region 3 (CR3) proteins. Phosphorylation was found to be very sensitive to alterations in amino acid side chains proximal to S338. Loss of N-terminal arginines resulted in decreased peptide phosphorylation while loss of these residues, as well as C-terminal glutamates and bulky C-terminal hydrophobic residues, decreased phosphorylation of the CR3 protein. Phosphorylation of Raf-1 on tyrosine 341 is significant in epidermal growth factor- and Src-mediated signaling, suggesting that cooperativity may exist between Pak and Src phosphorylation of Raf-1. Purified Pak and Src were found not to be cooperative in phosphorylating peptides or purified CR3 protein. However, the phosphorylation of Raf-1 S338 by Pak was increased in the presence of Src. The complexity of this signaling module could thus account for the different levels of Raf-1 activation required for fulfillment of different biological roles within the cell.  相似文献   

5.
Tyrosine-protein kinase, phosphorylating tyrosine residues of transmembrane band 3 protein, has been partially purified from human erythrocyte cytosol by DEAE-Sepharose chromatography followed by heparin-Sepharose chromatography. Such a Tyr-protein kinase (36 kDa), as distinct from the Ser/Thre-protein kinases (casein kinase S and TS), appears to display a broader site specificity than does the previously described human erythrocyte P-Tyr-protein phosphatase, dephosphorylating band 3 protein. That is, it is able to phosphorylate not only the highly acidic copolymer poly(Glu-Tyr) but also angiotensin II, lacking an acidic amino acid sequence around the target Tyr residue. Moreover, the phosphorylation of these two substrates exhibits a different pH dependence and a different response to NaCl and 2,3-bisphosphoglycerate. These results suggest that in intact erythrocytes the cytosolic Tyr-protein kinase might phosphorylate band 3 not only on Tyr-8, surrounded by several acidic side-chains (as demonstrated preferentially to occur in isolated ghosts), but also on other Tyr residues surrounded by other amino acid sequences.  相似文献   

6.
Rhodopsin kinase phosphorylates serine- and threonine-containing peptides from bovine rhodopsin's carboxyl-terminal sequence. Km's for the peptides decrease as the length of the peptide is increased over the range 12-31 amino acids, reaching 1.7 mM for peptide 318-348 from the rhodopsin sequence. The Km for phosphorylation of rhodopsin is about 10(3) lower than that for the peptides, which suggests that binding of rhodopsin kinase to its substrate, photolyzed rhodopsin, involves more than just binding to the carboxyl-terminal peptide region that is to be phosphorylated. A synthetic peptide from the rhodopsin sequence that contains both serines and threonines is improved as a substrate by substitution of serines for the threonines, suggesting that serine residues are preferred as substrates. Analogous 25 amino acid peptides from the human red or green cone visual pigment, a beta-adrenergic receptor, or M1 muscarinic acetylcholine receptors are better substrates for bovine rhodopsin kinase than is the peptide from bovine rhodopsin. An acidic serine-containing peptide from a non-receptor protein, alpha s1B-casein, is also a good substrate for rhodopsin kinase. However, many basic peptides that are substrates for other protein kinases--histone IIA, histone IIS, clupeine, salmine, and a neurofilament peptide--are not phosphorylated by rhodopsin kinase. Polycations such as spermine or spermidine are nonessential activators of phosphorylation of rhodopsin or its synthetic peptide 324-348. Polyanions such as poly(aspartic acid), dextran sulfate, or poly(adenylic acid) inhibit the kinase. Poly(L-aspartic acid) is a competitive inhibitor with respect to rhodopsin (KI = 300 microM) and shows mixed type inhibition with respect to ATP.  相似文献   

7.
Synthetic peptides derived from the sequence surrounding tyrosine-857 in the human platelet-derived growth factor (PDGF) beta-receptor were used to elucidate the requirement for length and presence of negative and positively charged amino acids in substrates of the PDGF beta-receptor protein tyrosine kinase. The measured Km for the different peptides were all in the range 1-10 mM. A peptide of only five amino acids, lacking acidic amino acid residues, were found to be substrates for the receptor kinase. Ligand binding was found to stimulate the phosphorylation of peptides mainly by lowering the Km both for peptide and for ATP. Only minor changes in the Vmax occurred upon stimulation with PDGF. The reaction mechanism was found to be sequential, i.e. both the peptide and ATP have to bind to the enzyme before any product is released.  相似文献   

8.
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992) were tested as inhibitors of cGMP-dependent protein kinase. The peptides themselves were not substrates. cGMP-dependent protein kinase activity was assayed using histone H2B and two synthetic peptide substrates. Consistent with previous observations of other peptide inhibitors of this enzyme (Glass, D. B. (1983) Biochem. J. 213, 159-164), the inhibitory peptides had no effect on the phosphorylation of histone H2B, but they competitively inhibited cGMP-dependent phosphorylation of the two peptide substrates. The parent inhibitor peptide, PKI(5-24)amide, and a series of analogs had Ki (or IC50) values for cGMP-dependent protein kinase in the range of 15-190 microM. In contrast to their effects on the cAMP-dependent protein kinase, the inhibitory peptides were substantially less potent with cGMP-dependent protein kinase, and potency was reduced by the presence of the NH2-terminal residues (residues 5-13). We conclude that the two protein kinases share a recognition of the basic amino acid cluster within the pseudosubstrate region of the peptide, but that the cGMP-dependent protein kinase does not recognize additional NH2-terminal determinants that make the inhibitor protein extremely potent toward the cAMP-dependent enzyme. Even- when tested at high concentrations and with peptide substrates, the native inhibitor protein did not inhibit cGMP-dependent protein kinase under assay conditions in which the peptides derived from it were inhibitory. Thus, the native inhibitor protein appears to have structural features which block interaction with the cGMP-dependent enzyme and enhance its selectivity for cAMP-dependent protein kinase.  相似文献   

9.
Membranes prepared from A-431 human epidermoid carcinoma cells retained the ability to bind 125I-labeled epidermal growth factor (EGF) in a specific manner. In the presence of [gamma-32P]ATP and Mn2+ or Mg2+, this membrane preparation was capable of phosphorylating endogenous membrane components, including membrane-associated proteins; the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. The binding of EGF to these membranes in vitro resulted in a severalfold stimulation of the phosphorylation reaction; again, the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. Membrane-associated dephosphorylation reactions did not appear to be affected by EGF. The phosphorylation reaction was not stimulated by cyclic AMP or cyclic GMP in the absence or presence of EGF. The phosphorylation system of the membrane was able to utilize [gamma-32P]GTP in both the basal and EGF-stimulated reactions. The enhanced membrane phosphorylation was specific for EGF and its derivatives; a wide variety of other peptide hormones were ineffective. The A-431 membrane preparation also was capable of phosphorylating exogenous proteins, such as histone, phosvitin, and ribonuclease, by a process which was stimulated by EGF. These findings suggest that one of the biochemical consequences of the binding of EGF to membranes is a rapid activation of a cyclic AMP-independent phosphorylating system.  相似文献   

10.
The beta-adrenergic receptor kinase (beta-ARK) phosphorylates G protein coupled receptors in an agonist-dependent manner. Since the exact sites of receptor phosphorylation by beta-ARK are poorly defined, the identification of substrate amino acids that are critical to phosphorylation by the kinase are also unknown. In this study, a peptide whose sequence is present in a portion of the third intracellular loop region of the human platelet alpha 2-adrenergic receptor is shown to serve as a substrate for beta-ARK. Removal of the negatively charged amino acids surrounding a cluster of serines in this alpha 2-peptide resulted in a complete loss of phosphorylation by the kinase. A family of peptides was synthesized to further study the role of acidic amino acids in peptide substrates of beta-ARK. By kinetic analyses of the phosphorylation reactions, beta-ARK exhibited a marked preference for negatively charged amino acids localized to the NH2-terminal side of a serine or threonine residue. While there were no significant differences between glutamic and aspartic acid residues, serine-containing peptides were 4-fold better substrates than threonine. Comparing a variety of kinases, only rhodopsin kinase and casein kinase II exhibited significant phosphorylation of the acidic peptides. Unlike beta-ARK, RK preferred acid residues localized to the carboxyl-terminal side of the serine. A feature common to beta-ARK and RK was a much greater Km for peptide substrates as compared to that for intact receptor substrates.  相似文献   

11.
Oxidative addition of a nitric oxide (NO) molecule to the thiol group of cysteine residues is a physiologically important post-translational modification that has been implicated in several metabolic and pathophysiological events. Our previous studies have indicated that S-nitrosylation can result in the disruption of the endothelial NO synthase (eNOS) dimer. It has been suggested that for S-nitrosylation to occur, the cysteine residue must be flanked by hydrophilic residues either in the primary structure or in the spatial proximity through appropriate conformation. However, this hypothesis has not been confirmed. Thus, the objective of this study was to determine if the nature of the amino acid residues that flank the cysteine in the primary structure has a significant effect on the rate and/or specificity of S-nitrosylation. To accomplish this, we utilized several model peptides based on the eNOS protein sequence. Some of these peptides contained point mutations to allow for different combinations of amino acid properties (acidic, basic, and hydrophobic) around the cysteine residue. To ensure that the results obtained were not dependent on the nitrosylation procedure, several common S-nitrosylation techniques were used and S-nitrosylation followed by mass spectrometric detection. Our data indicated that all peptides independent of the amino acids surrounding the cysteine residue underwent rapid S-nitrosylation. Thus, there does not appear to be a profound effect of the primary sequence of adjacent amino acid residues on the rate of cysteine S-nitrosylation at least at the peptide levels. Finally, our studies using recombinant human eNOS confirm that Cys98 undergoes S-nitrosylation. Thus, our data validate the importance of Cys98 in regulating eNOS dimerization and activity, and the utility of mass spectroscopy to identify cysteine residues susceptible to S-nitrosoylation.  相似文献   

12.
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.  相似文献   

13.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

14.
The alpha subunit of eukaryotic protein synthesis initiation factor (eIF-2 alpha) is phosphorylated at a single serine residue (Ser51) by two distinct and well-characterized protein kinase, the haem-controlled repressor (HCR) and the double-stranded RNA-activated inhibitor (dsI). The sequence adjacent to Ser51 is rich in basic residues (Ser51-Arg-Arg-Arg-Ile-Arg) suggesting that they may be important in the substrate specificity of the two kinases, as is the case for several other protein kinases. A number of proteins and synthetic peptides containing clusters of basic residues were tested as substrates for HCR and dsI. Both kinases were able to phosphorylate histones and protamines ar multiple sites as judged by two-dimensional mapping of the tryptic phosphopeptides. These data also showed that the specificities of the two kinases were different from one another and from the specificities of two other protein kinases which recognise basic residues, cAMP-dependent protein kinase and protein kinase C. In histones, HCR phosphorylated only serine residues while dsI phosphorylated serine and threonine. Based on phosphoamino acid analyses and gel filtration of tryptic fragments, dsI was capable of phosphorylating both 'sites' in clupeine Y1 and salmine A1, whereas HCR acted only on the N-terminal cluster of serines in these protamines. The specificities of HCR and dsI were further studied using synthetic peptides with differing configurations of basic residues. Both kinases phosphorylated peptides containing C-terminal clusters of arginines on the 'target' serine residue, provided that they were present at positions +3 and/or +4 relative to Ser51. However, peptides containing only N-terminal basic residues were poor and very poor substrates for dsI and HCR, respectively. These findings are consistent with the disposition of basic residues near the phosphorylation site in eIF-2 alpha and show that the specificities of HCR and dsI differ from other protein kinases whose specificities have been studied.  相似文献   

15.
Although the Ca2+/phospholipid-dependent protein kinase, protein kinase C, has a broad substrate specificity in vitro, the enzyme appears considerably less promiscuous in vivo. To date only a handful of proteins have been identified as physiological substrates for this protein kinase. In order to determine the basis for this selectivity for substrates in intact cells, we have probed the substrate primary sequence requirements of protein kinase C using synthetic peptides corresponding to sites of phosphorylation from four of the known physiological substrates. We have also identified the acetylated N-terminal serine of chick muscle lactate dehydrogenase as an in vitro site of phosphorylation for this protein kinase. These comparative studies have demonstrated that, in vivo, the enzyme exhibits a preference for one basic residue C-terminal to the phosphorylatable residue, as in the sequence: Ser/Thr-Xaa-Lys/Arg, where Xaa is usually an uncharged residue. Additional basic residues, both N and C-terminal to the target amino acid, enhance the Vmax and Km parameters of phosphorylation. None of the peptides based on physiological phosphorylation sites of protein kinase C was an efficient substrate of cAMP-dependent protein kinase, emphasizing the distinct site-recognition selectivities of these two pleiotropic protein kinases. The favorable kinetic parameters of several of the synthetic peptides, coupled with their selectivity for phosphorylation by protein kinase C, will facilitate the assay of this enzyme in the presence of other protein kinases in tissue and cell extracts.  相似文献   

16.
The phosphorylation of a synthetic peptide, corresponding to the C-terminal 11 amino acids of bovine rhodopsin (VII, residues 338-348), was studied under different conditions. The peptide was only phosphorylated in the presence of photoactivated rhodopsin. Using the same protocol, 12 other peptides, mapping in the rhodopsin C-terminal, were screened for their effectiveness as substrates for rhodopsin kinase. It was found that the peptides became poorer substrates with increasing length, and the best substrates comprised the most C-terminal 9-12 amino acids as opposed to other parts of the C-terminus. It was noted that the absence of the two-terminal residues Pro347 and Ala348 impaired peptide phosphorylation. The effect of the decay of metarhodopsin II on the phosphorylation of rhodopsin and the peptides was determined, and it was found that the rhodopsin and peptide phosphorylations decayed with half times of approximately 33 min and 28 min, respectively. The sites of phosphorylation on the peptides were determined and in all cases the phosphorylation was found to be predominantly on serine residues. Only the 11-residue peptide (VII, residues 338-348) contained significant threonine phosphorylation, which was about 25% that on serine residues. Cumulatively, the results suggest that Ser343 is the preferred site of phosphorylation in vitro. The reason for the poor substrate effectiveness of the larger peptides was examined by competitive experiments in which it was shown that a poorly phosphorylated larger peptide successfully inhibited the phosphorylation of a 'good' peptide substrate. The studies above support a mechanism for rhodopsin kinase that we have termed the 'kinase-activation hypothesis'. This requires that the kinase exists in an inactive form and is activated only after binding to photoactivated rhodopsin.  相似文献   

17.
The site-specific phosphorylation of bovine histone H1 by protein kinase C was investigated in order to further elucidate the substrate specificity of protein kinase C. Protein kinase C was found to phosphorylate histone H1 to 1 mol per mol. Using N-bromosuccinimide and thrombin digestions, the phosphorylation site was localized to the globular region of the protein, containing residues 71-122. A tryptic peptide containing the phosphorylation site was purified. Modification of the phosphoserine followed by amino acid sequence analysis demonstrated that protein kinase C phosphorylated histone H1 on serine 103. This sequence, Gly97-Thr-Gly-Ala-Ser-Gly-Ser(PO4)-Phe-Lys105, supports the contention that basic amino acid residues C-terminal to the phosphorylation site are sufficient determinants for phosphorylation by protein kinase C.  相似文献   

18.
The photosynthetic bacterium Rohodospirillum rubrum evidenced tyrosine protein phosphorylation under photoautotrophic conditions in the presence of [32P]Pi. The stability to alkaline treatment of the [32P] bound to the cell-free extract proteins suggested that tyrosine residues were carrying the labelling. One- and two-dimensional high voltage paper electrophoresis analysis revealed that such extracts do contain [32P]-phosphotyrosine residues. Furthermore, the association of alkali stable [32P] bound to specific proteins of the cell-free extract was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis combined with KOH treatment of the gel. A definite argument in favor of protein kinase(s) phosphorylating tyrosine residues in R.rubrum proteins was obtained by partial purification of a tyrosine kinase activity from cell-free extract capable of phosphorylating synthetic peptides that only contain a single tyrosine residue as phosphate acceptor.  相似文献   

19.
The techniques of phage-displayed homolog shotgun scanning, oligomer complementation, NMR secondary structure analysis, and computational docking provide a complementary suite of tools for dissecting protein-protein interactions. Focusing these tools on the interaction between the catalytic sub-unit of protein kinase A (PKAcat) and caveolin-1 scaffolding domain (CSD) reveals the first structural model for the interaction. Homolog shotgun scanning varied each CSD residue as either a wild-type or a homologous amino acid. Wild-type to homolog ratios from 116 different homologous CSD variants identified side-chain functional groups responsible for precise contacts with PKAcat. Structural analysis by NMR assigned an alpha-helical conformation to the central residues 84- 97 of CSD. The extensive mutagenesis data and NMR secondary structure information provided constraints for developing a model for the PKAcat-CSD interaction. Addition of synthetic CSD to phage-displayed CSD resulted in oligomer complementation, or enhanced binding to PKAcat. Together with previous experiments examining the interaction between CSD and endothelial nitric oxide synthase (eNOS), the results suggest a general oligomerization-dependent enhancement of binding between signal transducing enzymes and caveolin-1.  相似文献   

20.
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolytic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system, HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction [Deutscher, J., & Saier, M. H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. The site of ATP-dependent phosphorylation in HPr of S. faecalis has now been determined. [32P]P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, we obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, we isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号