首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Ca2+ efflux from the sarcoplasmic reticulum (SR) is routed primarily through SR Ca2+ release channels (ryanodine receptors, RyRs). When clusters of RyRs are activated by trigger Ca2+ influx through L-type Ca2+ channels (dihydropyridine receptors, DHPR), Ca2+ sparks are observed. Close spatial coupling between DHPRs and RyR clusters and the relative insensitivity of RyRs to be triggered by Ca2+ together ensure the stability of this positive-feedback system of Ca2+ amplification. Despite evidence from single channel RyR gating experiments that phosphorylation of RyRs by protein kinase A (PKA) or calcium-calmodulin dependent protein kinase II (CAMK II) causes an increase in the sensitivity of the RyR to be triggered by [Ca2+]i there is little clear evidence to date showing an increase in Ca2+ spark rate. Indeed, there is some evidence that the SR Ca2+ content may be decreased in hyperadrenergic disease states. The question is whether or not these observations are compatible with each other and with the development of arrhythmogenic extrasystoles that can occur under these conditions. Furthermore, the appearance of an increase in the SR Ca2+ “leak” under these conditions is perplexing. These and related complexities are analyzed and discussed in this report. Using simple mathematical modeling discussed in the context of recent experimental findings, a possible resolution to this paradox is proposed. The resolution depends upon two features of SR function that have not been confirmed directly but are broadly consistent with several lines of indirect evidence: (1) the existence of unclustered or “rogue” RyRs that may respond differently to local [Ca2+]i in diastole and during the [Ca2+]i transient; and (2) a decrease in cooperative or coupled gating between clustered RyRs in response to physiologic phosphorylation or hyper-phosphorylation of RyRs in disease states such as heart failure. Taken together, these two features may provide a framework that allows for an improved understanding of cardiac Ca2+ signaling.  相似文献   

2.
Cultured cardiac myocytes from neonatal rats show spontaneous and rhythmic contractions. The intracellular concentration of free Ca2 +  also changes rhythmically, associated with the rhythmic contraction of myocytes (Ca2 +  oscillation). This study aims to elucidate whether spontaneous rhythmic contraction affects the dynamics of intracellular Ca2 +  oscillation in cultured cardiac myocytes. In cultures at four days in vitro (4 DIV), spontaneous Ca2 +  oscillation was synchronized among myocytes. Treatment of cultures with an uncoupler of E - C coupling resulted in a cessation of the spontaneous contraction of cardiac myocytes, but did not abolish the Ca2 +  oscillation. The intercellular synchronization of intracellular Ca2 +  oscillation persisted, and both the intervals and the fluctuation of the oscillation tended to increase after the termination of rhythmic contraction. The present study demonstrated that mechanical factors associated with rhythmic contraction did not affect the intercellular synchronization of intracellular Ca2 +  oscillation, but possibly contributed to the stability of the oscillatory rhythm.  相似文献   

3.
Vertebrate embryos generate striking Ca2+ patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca2+ during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca2+ along the dorsal–ventral axis, with higher Ca2+ concentrations in the ventral margin and lower Ca2+ concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca2+ pump with 0.5 μM thapsigargin elevates cytosolic Ca2+ in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left–right asymmetry. Brain defects include a left–right reversal of pitx2 expression in the dorsal diencephalon and a left–right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca2+ pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca2+ pump during gastrulation inhibits expression of no tail (ntl) and left–right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer’s vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca2+ plays a role in Kupffer’s vesicle function, influencing ciliary motility and translating the vesicle’s counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca2+ plays an additional role in the formation of Kupffer’s vesicle.  相似文献   

4.
Ca2+ mobilization elicited by simulation with brief pulses of high K + were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 μM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 μM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 μM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the exchange mechanism. Conversely, when the reversal potential of the exchange was shifted to negative potentials by lowering [Na+]0 or by increasing [Na+]i by treatment with 20 μM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na+-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These findings suggest that in intact guinea pig cardiac cells, Ca2+ influx through the exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.  相似文献   

5.
The adjustment of Ca2+ entry in cardiac cells is critical to the generation of the force necessary for the myocardium to meet the physiological needs of the body. In this review, we present the concept that Ca2+ can promote its own entry through Ca2+ channels by different mechanisms. We refer to it under the general term of ‘Ca2+-induced Ca2+ entry’ (CICE). We review short-term mechanisms (usually termed facilitation) that involve a stimulating effect of Ca2+ on the L-type Ca2+ current (ICa-L) amplitude (positive staircase) or a lessening of Ca2+-dependent inactivation of ICa-L. This latter effect is related to the amount of Ca2+ released by ryanodine receptors (RyR2) of the sarcoplasmic reticulum (SR). Both effects are involved in the control of action potential (AP) duration. We also describe a long-term mechanism based on Ca2+-dependent down-regulation of the Kv4.2 gene controlling functional expression of the repolarizing transient outward K+ current (Ito) and, thereby, AP duration. This mechanism, which might occur very early during the onset of hypertrophy, enhances Ca2+ entry by maintaining Ca2+ channel activation during prolonged AP. Both Ca2+-dependent facilitation and Ca2+-dependent down-regulation of Ito expression favour AP prolongation and, thereby, promote sustained voltage-gated Ca2+ entry used to enhance excitation–contraction (EC) coupling (with no change in the density of Ca2+ channels per se). These self-maintaining mechanisms of Ca2+ entry have significant functions in remodelling Ca2+ signalling during the cardiac AP. They might support a prominent role of Ca2+ channels in the establishment and progression of abnormal Ca2+ signalling during cardiac hypertrophy and congestive heart failure.  相似文献   

6.
Glucose-induced insuline release, glucose-induced rises in intracellular free Ca2+ concentration ([Ca2+]i), and voltage-dependent Ca2+ channel activity were assessed in monolayer cultures of β-vells 3–5 day-old rats. The glucose-stimulated insulin secretory responses and [Ca2+]i rises were like those in adult rat β-cells rather than fetal rat β-cells. Voltage-dependent Ca2+ channel antagonists decreased glucose-induced insulin secretion, aborted the [Ca2+]2 rise and, like deprivation of extracellular Ca2+, prevented the glucose-induced rise in [Ca2+]i when added before the glucose challenge. The presence of nifedipine-sensitive, voltage-dependent Ca2+ channels was demonstrated directly by measuring Ca2+ currents using the whole-cell configuration of the patch-clamp technique and indirectly by measuring [Ca2+]1 after membrane depolarization by 45 mMm K+ or 200 μM tolbutamide. Thus, in cultured β-cells of 3–5 day-old rats the coupling of glucose stimulation to Ca2+ influx is essentially mature, in contrast to what has been reported for fetal or very early neonatal cells.  相似文献   

7.
 Heat shock protein ([Hsp70]) and ionized calcium ([Ca2+]) concentrations were examined in pigs’ blood at different times after heat stress (HS). Pigs were from different halothane genotypes (HAL) (NN, n=7; Nn, n=5; nn, n=6). [Hsp70] increased significantly from 1–2 h after HS and [Ca2+] decreased significantly from HS-end in NN and Nn. No significant differences in [Hsp70] and [Ca2+] were detected among NN and Nn. [Hsp70] and [Ca2+] in nn did not vary significantly from baseline values. [Hsp70] was significantly higher in NN and Nn than in nn. Briefly, HAL affected [Hsp70] after HS in pigs probably via a disordered [Ca2+] regulation.  相似文献   

8.
Using simulated Ca2+ and Mg2+ buffers, methods proposed to measure both ligand purity and the apparent dissociation constant (Kapp) were investigated regarding (1) predicted accuracy of both parameters and (2) generality of the solution.

The Bers’ Ca2+ macroelectrode method [Bers, D. M., 1982 A simple method for the determination of free [Ca] in Ca-EGTA solutions Am. J. Physiol. 242, C404–C408] cannot be used with Mg2+-macroelectrodes and is partly arbitrary since the linear part of the Scatchard plot is judged subjectively. Iterative methods have therefore been introduced. Iteration based on the Bers’ method or the lumped interference in the Nicolsky–Eisenman equation also failed with Mg2+ macroelectrodes. The Oiki et al., method [Oiki, S., Yomamoto, T., Okada, Y., 1994. Apparent stability constants and purity of Ca-chelating agents evaluated using Ca-sensitive electrodes by the double-log optimization method Cell Calcium 15, 209–46.] cannot be applied to Mg2+ macroelectrodes. The pH titration method of Moisescu and Pusch (Pflügers, Arch., 355, R122, 1975) predicted EGTA purity and Ca2+ contamination, but Kapp values for EGTA were approximate. It cannot be applied to Mg2+ binding. The partition method [Godt, R.E., 1974. Calcium-activated tension of skinned muscle fibres of the frog. Dependence on magnesium adenosine triphosphate concentration J. Gen. Physiol. 63, 722–739.] only approximately estimated the Kapp. Calibration, maintaining contaminating [Ca2+]/[Mg2+] at <1 μmol l−1, and setting standards by dilution, is the ultimate check of calculated ionised concentrations, although technically difficult. The macroelectrode method of Lüthi et al. [1997. Calibration of Mg2+-selective macromolecules down to 1 μmol l−1 in intracellular and Ca+- containing extracellular solutions. Exp. Physiol. 82, 453–467] accurately predicted purity and Kapp at pKapp values >4 and was independent of electrode characteristics. It is considered the method of choice.

Macroelectrode primary calibration should be carried out in solutions varying from 0.5 to 10 mmol l−1 combined with either Ca–EGTA or Mg–EDTA buffers; the [Ca2+] and [Mg2+] in other buffer ligands can be measured in a secondary calibration.  相似文献   


9.
This article reviews the key experiments demonstrating calcium-induced calcium release (CICR) in smooth muscle and contrasts the biophysical and molecular features of coupling between the sarcolemmal (L-type Ca2+ channel) and sarcoplasmic reticulum (ryanodine receptor) Ca2+ channels in smooth and cardiac muscle. Loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate and may occur with a variable delay following opening of the sarcolemmal Ca2+ channels. These features have been observed in the earliest studies of CICR in smooth muscle and are in marked contrast to cardiac CICR, where a close coupling between T-tubular and SR membranes results in tight coupling between the gating events. The relationship between this “loose coupling” and distinct subcellular release sites within smooth muscle cells, termed frequent discharge sites, is discussed.  相似文献   

10.
Luis Vaca 《FEBS letters》1996,390(3):289-293
Utilizing the whole-cell configuration of the patch-clamp technique the effect of calmodulin (CaM) on thapsigargin-induced Ca2+ current has been studied. Addition of several concentrations of CaM to the patch pipette induced concentration-dependent inhibition of thapsigargin-induced Ca2+ current in bovine aortic endothelial cells. The effect of CaM was Ca2+ dependent and was not observed when the intracellular Ca2+ was buffered to 1 nM with EGTA. CaM produced two major effects on the thapsigargin-induced Ca2+ current. First CaM slow down activation of the current by thapsigargin from a control value of 16 ± 5 to 31 ± 6 s with 1 μM CaM in the pipette solution. The second effect of CaM was to reduce the current amplitude in a concentration-dependent manner. The inhibition of Ca2+ current was observed at the peak of the current and at the sustained current level. The reduction of current at the sustained level was observed 15–20 s after onset of the thapsigargin response. The half inhibitory concentration determined from these experiments was 0.1 μM. These results indicate that CaM can modulate thapsigargin-induced Ca2+ current in this endothelium, suggesting a possible role for CaM in the regulation of store-operated Ca2+ influx.  相似文献   

11.
The effects of calcium ions (Ca2+) on the stability of artichoke (Cynara scolymus L.) peroxidase (AKPC) have been studied. The thermal stability of AKPC was improved by the addition of Ca2+; the melting temperature increased by 20 °C and the deactivation energy by 26 kJ mol−1. AKPC was stable in a selection of organic solvents but was less active with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) than under aqueous conditions. Ca2+-free AKPC retained more activity in the presence of organic solvents due to its better maintenance of the rate of compound I formation with hydrogen peroxide (H2O2) compared to AKPC-Ca2+. AKPC retained at least 75% activity over 24 h in the pH range 3.0–10.5 and about 50% over 1 month at pH 7.0 or 5.5, irrespective of the Ca2+ content. AKPC-Ca2+ was considerably more resistant to inactivation by H2O2 than Ca2+-free AKPC suggesting that the presence of Ca2+ boosts turnover under oxidizing conditions. AKPC has been applied as an alternative to horseradish peroxidase (HRP) in glucose concentration assays; the presence of Ca2+ or of the Ca2+ chelating agent ethylenediaminetetraacetic acid made no difference to the final result. The possibility is discussed that addition and removal of a labile Ca2+ from AKPC could be used to control enzyme activity both in vivo and in vitro.  相似文献   

12.
Ravier MA  Henquin JC 《FEBS letters》2002,530(1-3):215-219
Glucose-induced insulin secretion is pulsatile. We investigated how the triggering pathway (rise in β-cell [Ca2+]i) and amplifying pathway (greater Ca2+ efficacy on exocytosis) influence this pulsatility. Repetitive [Ca2+]i pulses were imposed by high K++ diazoxide in single mouse islets. Insulin secretion (measured simultaneously) tightly followed [Ca2+]i changes. Lengthening [Ca2+]i pulses increased the duration but not the amplitude of insulin pulses. Increasing glucose (5–20 mmol/l) augmented the amplitude of insulin pulses without changing that of [Ca2+]i pulses. Larger [Ca2+]i pulses augmented the amplitude of insulin pulses at high, but not low glucose. In conclusion, the amplification pathway ensures amplitude modulation of insulin pulses whose time modulation is achieved by the triggering pathway.  相似文献   

13.
Caldesmon is a component of the thin filaments of smooth muscles where it is believed to play an essential role in regulating the thin filaments’ interaction with myosin and hence contractility. We studied the effects of caldesmon and two recombinant fragments CaDH1 (residues 506–793) and CaDH2 (residues 683–767) on the structure of actin–tropomyosin by making measurements of the fluorescence polarisation of probes specifically attached to actin. CaDH1, like the parent molecule caldesmon, is an inhibitor of actin–tropomyosin interaction with myosin whilst CaDH2 is an activator. The F-actin in permeabilised and myosin free rabbit skeletal muscle ‘ghost’ fibres was labelled by tetramethyl rhodamine-isothiocyanate (TRITC)–phalloidin or fluorescein-5′-isothiocyanate (FITC) at lysine 61. Fluorescence polarisation measurements were made and the parameters ΦA, ΦE, Θ1/2 and N were calculated. ΦA and ΦE are angles between the fiber axis and the absorption and emission dipoles, respectively; Θ1/2 is the angle between the F-actin filament axis and the fiber axis; N is the relative number of randomly oriented fluorophores. Actin–tropomyosin interaction with myosin subfragment-1 induced changes in the parameters of the polarised fluorescence that are typical of strong binding of myosin to actin and of the ‘on’ conformational state of actin. Caldesmon and CaDH1 (as well as troponin in the absence of Ca2+) diminished the effect of S-1, whereas CaDH2 (as well as troponin in the presence of Ca2+) enhanced the effect of S1. Thus the structural evidence correlates with biochemical evidence that C-terminal actin-binding sites of caldesmon can modulate the structural transition of actin monomers between ‘off’ (caldesmon and CaDH1) and ‘on’ (S-1 and CaDH2) states in a manner analogous to troponin.  相似文献   

14.
Chao YY  Jan CR  Ko YC  Chen JJ  Jiann BP  Lu YC  Chen WC  Su W  Chen IS 《Life sciences》2002,70(26):4367-3121
The effect of five lignans isolated from Hernandia nymphaeifolia on estrogenic compounds (17β-estradiol, tamoxifen and clomiphene)-induced Ca2+ mobilization in human neutrophils was investigated. The five lignans were epi-yangambin, epi-magnolin, epi-aschantin, deoxypodophyllotoxin and yatein. In Ca2+–containing medium, the lignans (50–100 μM) inhibited 10 μM 17β-estradiol- and 5 μM tamoxifen-induced increases in intracellular free Ca2+ levels ([Ca2+]i) without changing 25 μM clomiphene-induced [Ca2+]i increase. 17β-estradiol and tamoxifen increased [Ca2+]i by causing Ca2+ influx and Ca2+ release because their responses were partly reduced by removing extracellular Ca2+. In contrast, clomiphene solely induced Ca2+ release. The effect of the lignans on these two Ca2+ movement pathways underlying 17β-estradiol- and tamoxifen-induced [Ca2+]i increases was explored. All the lignans (50–100 μM) inhibited 10 μM 17β-estradiol-and 5 μM tamoxifen-induced Ca2+ release, and 17β-estradiol-induced Ca2+ influx. However, only 100 μM epi-aschantin was able to reduce tamoxifen-induced Ca2+ influx while the other lignans had no effect. Collectively, this study shows that the lignans altered estrogenic compounds-induced Ca2+ signaling in human neutrophils in a multiple manner.  相似文献   

15.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

16.
Proteoheparan sulfate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. Due to electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, representing a receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques showing that HDL has a high binding affinity to the receptor and a protective effect on interfacial heparan sulfate proteoglycan layers, with respect to LDL and Ca2+ complexation. LDL was found to deposit strongly at the proteoheparan sulfate, particularly in the presence of Ca2+, thus creating the complex formation ‘proteoglycan–low density lipoprotein–calcium’. This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulfate proteoglycan protected against LDL docking and completely suppressed calcification of the proteoglycan–lipoprotein complex. In addition, HDL and aqueous garlic extract were able to reduce the ternary complex deposition and to disintegrate HS-PG/LDL/Ca2+ aggregates. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a ‘nanoscopic’ level under close to physiological conditions. In particular, Ca2+-promoted LDL deposition and the protective effect of HDL, even at high Ca2+ and LDL concentrations, agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Therefore, we believe that the system can be of some use in investigations, e.g. of the interplay between different lipoproteins in arteriosclerotic plaque formation, as well as in high throughput screening of candidate drugs to atherosclerosis in a biosensor application.  相似文献   

17.
We investigated the initiation of Ca2+waves underlying triggered propagated contractions (TPCs) occurring in rat cardiac trabeculae under conditions that simulate the functional non-uniformity caused by mechanical or ischemic local damage of the myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small constant flow jet of solution with a composition that reduces excitation–contraction coupling in myocytes within that segment. Force was measured and sarcomere length as well as [Ca2+]i were measured regionally. When the jet-contained Caffeine, BDM or Low-[Ca2+], muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening of the normal regions outside the jet. During relaxation the sarcomeres in the exposed segment shortened rapidly. Short trains of stimulation at 2.5 Hz reproducibly caused Ca2+-waves to rise from the borders exposed to the jet. Ca2+-waves started during force relaxation of the last stimulated twitch and propagated into segments both inside and outside of the jet. Arrhythmias, in the form of non-driven rhythmic activity, were triggered when the amplitude of the Ca2+-wave increased by raising [Ca2+]o. The arrhythmias disappeared when the muscle uniformity was restored by turning the jet off. We have used the four state model of the cardiac cross bridge (Xb) with feedback of force development to Ca2+ binding by Troponin-C (TnC) and observed that the force–Ca2+ relationship as well as the force–sarcomere length relationship and the time course of the force and Ca2+ transients in cardiac muscle can be reproduced faithfully by a single effect of force on deformation of the TnC·Ca complex and thereby on the dissociation rate of Ca2+. Importantly, this feedback predicts that rapid decline of force in the activated sarcomere causes release of Ca2+ from TnC.Ca2+,which is sufficient to initiate arrhythmogenic Ca2+ release from the sarcoplasmic reticulum. These results show that non-uniform contraction can cause Ca2+-waves underlying TPCs, and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of arrhythmogenic Ca2+-waves.  相似文献   

18.
Tumour-promoting phorbol esters (phorbol-12-myristate-13-acetate, PMA; phorbol-12,13-dibutyrate, PDBu) but not 4β-phorbol, activate protein kinase C. Using human platelets pre-labelled with quin2 or 32PO4 we examined the effects of these compounds on human platelet cytosolic free Ca2+ ([Ca2+]j) and on [32]phosphatidic acid ([32P]PtdOH). PMA and PDBu, but not 4β-phorbol inhibited thrombin-, PAF- and vasopressin-induced elevation of [Ca2+], and [2+P]PtdOH formation. It is suggested that protein kinase C may act to terminate the transduction processes that link receptor occupancy to cellular activation.  相似文献   

19.
Intravenous administration of ovokinin(2–7), a cleavage peptide derived from ovalbumin, dose-dependently (0.1–5 mg/kg) lowered the mean arterial pressure (MAP) that was not accompanied by a significant change in the heart rate (HR) of urethane-anesthetized rats. The hypotensive effects of ovokinin(2–7) were five orders of magnitude lower compared to that of bradykinin and were largely prevented by pretreatment with the bradykinin B2 receptor antagonist HOE140 (81.6±18.4%) and moderately affected by the B1 receptor antagonist [des-Arg10]-HOE140 (26.3±15.5%). Intracellular Ca2+ levels, as measured by Fur 2-AM, were significantly elevated in cultured aorta smooth muscle cells by ovokinin(2–7). The increases were abolished by HOE140 and unaffected by [des-Arg10]-HOE140. The elevation of intracellular Ca2+ by ovokinin(2–7) was dependent on Ca2+ entry from extracellular space as it was reduced in a Ca2+-free solution. Pretreatment of the cells with the phospholipase C inhibitor U73122 (2 μM) eliminated the Ca2+ increase by the peptide. PA phosphohydrolase and phospholipase A2 inhibitors significantly reduced the responses as well. Our results show that ovokinin(2–7) modulates cardiovascular activity by interacting with B2 bradykinin receptors.  相似文献   

20.
By mediating the Ca2+ influx that triggers exocytotic fusion, Ca2+ channels play a central role in a wide range of secretory processes. Ca2+ channels consist of a complex of protein subunits, including an 1 subunit that constitutes the voltage-dependent Ca2+-selective membrane pore, and a group of auxiliary subunits, including β, γ, and 2–δ subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca2+ channels are constituted by different combinations of 1 subunits (of which 10 have been identified) and auxiliary subunits, particularly β (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca2+ channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca2+ channel structure and function in exocytotic secretion. We discuss Ca2+ channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca2+ channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca2+ channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号