首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue contains a stroma that can be easily isolated. Thus, human adipose tissue presents an source of multipotent stromal cells. In order to determine the implication of hematopoietic markers in adipocyte biology, we have defined part of the phenotype of the human adipose tissue-derived stromal cells, and compared this to fully differentiated adipocytes. Flow cytometry demonstrates that the protein expression phenotype of both cell types are similar and includes the expression of CD10, CD13, CD34, CD36, CD55, CD59 and CD65. No significant difference between subcutaneous and omental adipose tissue could be demonstrated concerning the expression of these markers. However, the expression of CD34, CD36 and CD65 is cell-dependent. While the expression of CD36 and CD65 doubled between stromal cells and mature adipocytes, the expression of CD34 decreased, despite this protein being present on the mature adipocyte. As CD34 is described as a stem cell marker and it being unlikely to be expressed on differentiated cells, this result was confirmed by immunostaining and western blot. The clear function of this protein on the adipocyte membrane remains to be determined. The characterization of new proteins on mature adipocytes could have broad implications for the comprehension of the biology of this tissue.  相似文献   

2.
Populations of human mesenchymal stem cells were derived from bone marrow and adipose tissue. Here analysis of six individuals is represented. Cells were isolated, expanded and evaluated by the expression of surface antigens using flow cytometry. These cells displayed similar characteristics for many markers. Cells isolated from bone marrow and adipose tissue were found to be homogeneously positive for CD13, CD44, CD90, CD105, and negative for CD45, CD34, CD31 and CD117. Besides, differences in surface antigene CD10 expression between narrow and adipose tissue-derived cells were detected. All these findings indicate that both bone marrow and adipose tissue are important sources of mesenchymal stem cells, which could be used in cell therapy protocols.  相似文献   

3.
We compared the morphology and differentiation capacity of human stromal cells derived from bone marrow (BMSC), adipose tissue (ATSC), hair follicle dermal papilla (DPC) and dermal fibroblasts (DFb). All cells have fibroblast-like morphology. ATSC and DPC cells expressed stem cell the surface markers CD105, CD49d, and STRO-1, which were revealed immunocytochemically. CD49d was not found on BMSC. The low expression of CD49d and STRO-1 was registered in the DFb population. ATSC, BMSC, and DPC have similar capacities for adipo- and osteogenic differentiation. These cells, cultured in appropriate induction media, alter the phenotype and synthesize specific proteins. However, the expression of differentiation in the DPC population is lower than in ATSC and BMSC cultures. We propose that these cell populations have primitive progenitor cells with properties of mesenchymal stem cells.  相似文献   

4.
Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.  相似文献   

5.
Human mesenchymal stem cells (MSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. This differentiation potential makes MSC excellent candidates for cell-based tissue engineering. In this study, we have examined phenotypes and gene expression profile of the human adipose tissue-derived stromal cells (ATSC) in the undifferentiated states, and compared with that of bone marrow stromal cells (BMSC). ATSC were enzymatically released from adipose tissues from adult human donors and were expanded in monolayer with serial passages at confluence. BMSC were harvested from the metaphysis of adult human femur. Flowcytometric analysis showed that ATSC have a marker expression that is similar to that of BMSC. ATSC expressed CD29, CD44, CD90, CD105 and were absent for HLA-DR and c-kit expression. Under appropriate culture conditions, MSC were induced to differentiate to the osteoblast, adipocyte, and chondrogenic lineages. ATSC were superior to BMSC in respect to maintenance of proliferating ability, and microarray analysis of gene expression revealed differentially expressed genes between ATSC and BMSC. The proliferating ability and differentiation potential of ATSC were variable according to the culture condition. The similarities of the phenotypes and the gene expression profiles between ATSC and BMSC could have broad implications for human tissue engineering.  相似文献   

6.
Cellular population with characteristics of multipotent mesenchymal stromal cells (MMSCs) was isolated from subcutaneous adipose tissue frozen without any cryoprotectant at -70 degrees C. Under critical for the adipose tissue condition, the cells retained their viability in vitro and ability of adhesion to plastic. Cellular population was homogeneous and represented by small cells (d - 7 microm) with fibroblast-like morphology. Cells were positively stained with Abs for the Abs: CD29, CD44, CD49a, b, d, CD73, CD90, CD105, CD166, HLA ABC. Cells were negative for CD34, CD45--markers of hematopoietic cells, CD31--marker of endothelial cells, Stro-1, as well as for HLA DR, DP, DQ (flow cytometer analysis). Being induced to differentiate in vitro, the cells were able to differentiate into cells similar to cells of bone, adipose and cartilage tissue. Karyological assay of the cells isolated from human adipose tissue subjected to cold shock revealed diploid set of chromosomes, 46, XX, without aneuploidy and structural reconstructions of chromosomes. Thus, it has been established that, under extreme condition for the organism, the population of cells with a phenotype similar to miltipotent mesenchymal stromal cells is preserved in subcutaneous adipose tissue.  相似文献   

7.
Multipotent stem cells were isolated from human fetal heart, liver, muscle, lung, derma, kidney, and adipose tissue, and then analyzed for their characteristics and function. Cells with characteristics similar to bone marrow-derived post-embryonic multipotent stem cells can be selected and cultured from tissues other than bone marrow. This may then help explain the “stem cell plasticity” found in multiple human tissues. Baijun Fang and Ning Li contributed equally to this study.  相似文献   

8.
Animal and early clinical studies have provided evidence suggesting that intracoronary administration of autologous bone marrow-derived cells results in improved outcome following myocardial infarction. Animal studies with cultured marrow stromal cells (MSC) have provided similar data. Cells with properties that are similar to MSC have been identified in adipose tissue. Other groups have demonstrated in vivo differentiation of adipose tissue-derived cells (ADC) into cells exhibiting biochemical and functional markers of cardiac myocytes, including spontaneous beating.Based on these observations, the objective of the present study was to determine whether ADC might undergo similar differentiation in vivo in the context of myocardial injury.ADC were isolated from subcutaneous adipose tissue of Rosa26 mice (which express the beta-galactosidase transgene in almost every tissue) and injected into the intraventricular chamber of B6129S recipient mice immediately following induction of myocardial cryoinjury. Groups of recipients were euthanized at 24 hours, 7 and 14 days post surgery and examined for the presence of donor-derived cells within the heart.Beta-gal positive cells were identified in the infarcts of ADC-treated animals. No staining was observed in uninjured myocardium or in infarcts of control animals. Immunohistochemical analysis revealed co-expression of beta-gal with Myosin Heavy Chain, Nkx2.5 and with Troponin I. Co-expression of beta-galactosidase with Connexin 43, CD31, von Willebrand factor, MyoD or CD45 was not detected.Thus, these data indicate that adipose tissue contains a population of cells that has the ability to engraft injured myocardium and that this engraftment is associated with expression of cardiomyocytic markers by donor-derived cells.  相似文献   

9.
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.  相似文献   

10.

Background

Platelet-rich plasma (PRP) is increasingly used as a cell culture supplement, in order to reduce the contact of human cells with animal-derived products during in vitro expansion. The effect of supplementation changes on cell growth and protein production is not fully characterized.

Methods

Human mesenchymal stromal cells from bone marrow, adipose tissue and Wharton''s Jelly were isolated and cultured in PRP-supplemented media. Proliferation, in vitro differentiation, expression of cell surface markers, mRNA expression of key genes and protein secretion were quantified.

Results

10% PRP sustained five to tenfold increased cell proliferation as compared to 10% fetal bovine serum. Regarding cell differentiation, PRP reduced adipogenic differentiation and increased calcium deposits in bone marrow and adipose tissue-mesenchymal stromal cells. Wharton''s Jelly derived mesenchymal stromal cells secreted higher concentrations of chemokines and growth factors than other mesenchymal stromal cells when cultured in PRP-supplemented media. Bone marrow derived mesenchymal stromal cells secreted higher concentrations of pro-inflammatory and pro-angiogenic proteins. Mesenchymal stromal cells isolated from adipose tissue secreted higher amounts of extracellular matrix components.

Conclusions

Mesenchymal stromal cells purified from different tissues have distinct properties regarding differentiation, angiogenic, inflammatory and matrix remodeling potential when cultured in PRP supplemented media. These abilities should be further characterized in order to choose the best protocols for their therapeutic use.  相似文献   

11.
Several studies have shown the presence of fibroblast-like cells in the stromal fraction of different tissues with a high proliferative and differentiation potential. Platelet alpha granules contain growth factors released into the environment during activation. The effects of different supplements for culture medium (human serum, bovine serum and platelet lysate) on cultured human fibroblast-like cells from bone marrow, adipose tissue, trabecular bone and dental pulp have been compared. Expression of typical stromal and hematopoietic markers was analyzed and proliferative rates were determined. Flow cytofluorometry showed a homogenous pattern in serial-passaged cells, with a high level of stromal cell-associated markers (CD13, CD90, CD105). The presence of platelet lysate in culture media increased the number of cell generations obtained regardless of cell source. This effect was serum-dependent. Cell-based therapies can benefit by the use of products from human origin for “ex vivo” expansion of multipotent cells.  相似文献   

12.
Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy.  相似文献   

13.
Hee CK  Nicoll SB 《Cytotherapy》2011,13(5):528-538
Background aimsRecent studies have demonstrated that cells committed to a fibroblastic lineage, including dermal fibroblasts, may undergo osteoblastic differentiation when treated with steroid hormones. However, stem cells have also been isolated from the dermis, making it unclear whether osteoinduction of dermal fibroblasts is the result of transdifferentiation of committed fibroblasts or differentiation of resident multipotent stromal cells, which are morphologically indistinguishable.MethodsFlow cytometry was used to characterize the expression of CD26, CD90 and CD105 on neonatal and adult human dermal fibroblasts and adult human bone marrow-derived stromal cells. These cells were then cultured with the steroid hormones 1α,25-dihydroxyvitamin D3 and dexamethasone, and evaluated for protein expression and mineral deposition typical of an osteoblastic phenotype.ResultsThe surface peptidase, dipeptidyl peptidase IV (CD26), was differentially expressed between human neonatal (98.22 ± 1.47%) and adult (90.73 ± 7.97%) dermal fibroblasts and adult bone marrow-derived stromal cells (6.84 ± 5.07%). In addition, neonatal dermal fibroblasts treated with vitamin D3 expressed alkaline phosphatase, osteocalcin and bone sialoprotein, and deposited mineral, which is consistent with an osteoblastic phenotype. Such differentiation was not observed in adult dermal fibroblasts. In contrast, marrow-derived stromal cells required dexamethasone in order to undergo osteoblastic differentiation.ConclusionsTaken together, the differential surface antigen expression and disparate response to steroid hormones suggest that committed neonatal dermal fibroblasts are distinct from mesenchymal stromal cells and possess osteogenic differentiation potential.  相似文献   

14.
Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.  相似文献   

15.
16.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation.  相似文献   

18.
Human adipose tissue is a source of multipotent stem cells   总被引:209,自引:0,他引:209       下载免费PDF全文
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.  相似文献   

19.
The aim of the present study was to evaluate the potential of intraoral harvested alveolar bone as an alternative source of multipotent mesenchymal stromal cells for future applications in oral and maxillofacial tissue engineering. Explant cultures were established from 20 alveolar bone samples harvested from the oblique line immediately before wisdom tooth removal. Morphology and proliferation characteristics of the in vitro expanded cells, referred to as human alveolar bone-derived cells (hABDCs), were studied using phase-contrast microscopy. Immunocytochemical analysis of their surface marker expression was conducted using monoclonal antibodies defining mesenchymal stromal cells. To evaluate their multilineage differentiation potential, hABDCs were induced to differentiate along the osteogenic, adipogenic, and chondrogenic lineage and compared to bone marrow mesenchymal stromal cells (hBMSCs) on mRNA and protein levels applying RT-PCR and cytochemical staining methods. hABDCs showed typical morphological characteristics comparable to those of hBMSCs such as being mononuclear, fibroblast-like, spindle-shaped, and plastic adherent. Immunophenotypically, cells were positive for CD105, CD90, and CD73 while negative for CD45, CD34, CD14, CD79α, and HLA-DR surface molecules, indicating an antigen expression pattern considered typical for multipotent mesenchymal stromal cells. As evidenced by RT-PCR and cytochemistry, hABDCs showed multilineage differentiation and similar chondrogenic and osteogenic differentiation potentials when compared to hBMSCs. Our findings demonstrate that human alveolar bone contains mesenchymal progenitor cells that can be isolated and expanded in vitro and are capable of trilineage differentiation, providing a reservoir of multipotent mesenchymal cells from an easily accessible tissue source.  相似文献   

20.
Adipose tissue development is associated with neovascularization, which might be exploited therapeutically. We investigated the neovasculogenesis antigenic profile and kinetics in adipose tissue-derived stromal cells (ADSCs) to understand the potential of ADSCs to generate new vessels. Murine and human visceral adipose tissues were processed with collagenase to obtain ADSCs from the stromal vascular fraction. Freshly isolated murine and human ADSCs featured the expression of early markers of endothelial differentiation [uptake of DiI-labeled acetylated LDL, CD133, CD34, kinase insert domain receptor (KDR)], but not markers for more mature endothelial cells (CD31 and von Willebrand factor). In methylcellulose medium, multilocular cells positive for Oil Red O staining appeared after 6 days. After 10 days, clusters of ADSCs spontaneously formed branched tubelike structures, which were strongly positive for CD34 and CD31, while losing their ability to undergo adipocyte differentiation. In Matrigel, in the presence of endothelial growth factors ADSCs formed branched tubelike structures. By clonal assays in methylcellulose we also determined the frequency of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) colony-forming units from ADSCs, compared with bone marrow-derived stromal cells (BMSCs) used as a positive control. After 4-14 days, BMSCs formed 8 +/- 3 BFU-E and 40 +/- 10 CFU-GM, while ADSCs never produced colonies of myeloid progenitors. The developing adipose tissue has neovasculogenic potential, based on the recruitment of local rather than circulating progenitors. Adipose tissue might therefore be a viable autonomous source of cells for postnatal neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号