首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C receptor CR3 (iC3b-receptor, CD11b/CD18) plays an essential role in several phagocytic and adhesive neutrophil functions. Recent evidence suggests that stimulus-induced phosphorylation of the CR3 beta-chain, CD18, may mediate certain neutrophil functions by transiently converting the molecule to an activated state. Staurosporine, a protein kinase C inhibitor that blocks PMA-induced CD18 phosphorylation, was used to study the functional relevance of this event. Neutrophils adhered to glass were assayed for binding and phagocytosis of iC3b-opsonized sheep E (EC3bi) in the presence or absence of PMA and/or staurosporine. Binding of EC3bi was markedly increased, not only by PMA, but also by staurosporine and by a combination of both agents (three- to sevenfold). The enhancement of rosetting by staurosporine was likely caused by increased surface expression of CR3 via exocytosis of specific granular contents. In contrast, staurosporine alone did not stimulate phagocytosis of EC3bi and markedly inhibited PMA-induced phagocytosis. Staurosporine also inhibited phagocytosis of yeast beta glucan particles, a CR3 ligand that, in contrast to EC3bi, is bound and ingested without additional prior treatment with PMA. beta glucan phagocytosis was associated with a low level of CD18 phosphorylation. Staurosporine did not block phagocytosis in general, because this agent had relatively little effect on FcR-mediated phagocytosis. These data demonstrate that phagocytosis mediated by CR3 requires activation of CR3 via a staurosporine-sensitive pathway. Increased binding of EC3bi, a function of increased surface expression of CR3, does not require activation of CR3 by such a pathway, confirming previous evidence for the independence of these two phenomena. A direct role for CD18 phosphorylation in the activation of CR3 for phagocytosis is consistent with these data.  相似文献   

2.
《The Journal of cell biology》1989,109(6):3435-3444
The leukocyte CD11/CD18 adhesion molecules (beta 2 integrins) are a family of three heterodimeric glycoproteins each with a distinct alpha subunit (CD11a, b, or c) and a common beta subunit (CD18). CD11/CD18 mediate crucial leukocyte adhesion functions such as chemotaxis, phagocytosis, adhesion to endothelium, aggregation, and cell-mediated cytotoxicity. The enhanced cell adhesion observed upon activation of leukocytes is associated with increased surface membrane expression of CD11/CD18, as well as a qualitative upregulation of CD11/CD18 functions. To elucidate the nature of the qualitative modifications that occur, we examined the phosphorylation status of these molecules in resting human leukocytes and upon activation with PMA or with the chemotactic peptide F-met-leu-phe (FMLP). In unstimulated cells, all three CD11 subunits were found to be constitutively phosphorylated. In contrast, phosphorylation of the common CD18 subunit was minimal. PMA induced rapid and sustained phosphorylation of CD18 that occurred at high stoichiometry, but had only minimal effects on phosphorylation of the associated CD11 subunits. FMLP also induced rapid phosphorylation of CD18, but the effect was of short duration. FMLP-induced phosphorylation of CD18 was not related to its Ca++-mobilizing effect, as CD18 phosphorylation was not observed upon treatment of leukocytes with the Ca++ ionophore, ionomycin. Phosphoamino acid analysis of CD11/CD18 in PMA- or FMLP-treated monocytes revealed a predominance of phosphoserine residues in all CD11/CD18 subunits. A small component of phosphothreonine was present in CD11c and CD18 and a minor component of phosphotyrosine was also detected in CD18 upon leukocyte activation may regulate the adhesion functions mediated by the CD11/CD18 family of molecules.  相似文献   

3.
Normal human neutrophils bound an as yet unclustered mAb designated BS-1. The Ag immunoprecipitated with BS-1 was blotted by CD43 mAb (and vice versa), and is therefore identical to the large sialoglycoprotein. The CD43 Ag expression on the neutrophil surface is decreased upon neutrophil activation with the chemoattractant FMLP or with PMA. This can be (at least partially) explained by the release of CD43+ material with an altered electrophoretic mobility into the extracellular medium of the neutrophils upon activation. Cross-linking of the CD43 Ag with BS-1 also invoked neutrophil activation by itself: F(ab)2 fragments of BS-1-induced neutrophil aggregation, in contrast to F(ab) fragments. Neither respiratory burst activity nor a significant rise in intracellular Ca2+ level or actin polymerization were observed. The transient neutrophil aggregation response was largely CD18 dependent, especially in the initial phase of homotypic clustering. However, a significant CD18-independent mechanism contributed thereafter to the neutrophil aggregation, as was further substantiated by the use of cultured T (and EBV-transformed B) cell clones of a patient with a leukocyte adhesion deficiency. CD43 is the first molecule described on neutrophils able to induce adhesive properties in a dual fashion.  相似文献   

4.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

5.
Whether homotypic neutrophil aggregation depends on the quantitative increase of gp165/95 molecules (Mac 1, CR3) recruited to the cell surface during activation was studied using mAb of the CD11b group that recognize distinct epitopes encoded by the alpha-subunit of this glycoprotein. After the addition of antibody MN41, neutrophils did not aggregate in response to a chemoattractant, FMLP. Blockade of preexisting surface gp165/95 by mAb MN41, followed by removal of the excess antibody from the mixture, was used to show that the molecules of gp165/95 newly expressed in response to stimulation by a chemoattractant were incapable of effectively mediating the induced cell-cell interactions of aggregation. Flow cytometry studies confirmed that binding of unlabeled antibody MN41 did not block further increases in surface expression of gp165/95 after stimulation with FMLP. These data suggest that molecules of gp165/95 exhibit two functionally distinct forms, one, present on the surface of freshly isolated neutrophils, that becomes competent to mediate the aggregation response upon activation by a stimulus and a second form that can be translocated to the cell surface by the stimulus but is greatly diminished if not lacking in the ability to participate in that aggregation event.  相似文献   

6.
FcgammaRIIIb (CD16) is a glycosyl phosphatidylinositol (GPI)-anchored low-affinity IgG receptor, exclusively expressed on human neutrophils. FcgammaRIIIb associates with complement receptor 3 (CR3, Mac-1, CD11b/CD18), which may indirectly link FcgammaRIIIb to the actin cytoskeleton. Upon neutrophil activation, apoptosis, or chemotaxis, FcgammaRIIIb is shed from the cell surface. In all of these events, actin rearrangements play an important role. To establish a role for the actin cytoskeleton in the control of FcgammaRIIIb shedding, we treated human neutrophils with jasplakinolide, an actin-polymerizing peptide. We show that enhanced actin polymerization induces time- and dose-dependent shedding of FcgammaRIIIb. This effect was not restricted to FcgammaRIIIb, because the cell surface expression of CD43, CD44, and L-selectin was also downregulated after induction of actin polymerization. This actin-dependent pathway is staurosporine sensitive but does not appear to involve activation of PKC or CR3. These data show that the actin cytoskeleton can regulate protein ectodomain shedding from human neutrophils.  相似文献   

7.
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) is a potent activator of neutrophil degranulation. The intracellular signaling mechanisms involved in the potentiating effect of fibrinogen on fMLP-induced primary granule release from human neutrophils were investigated. Fibrinogen caused a significant leftward shift of the concentration-response curve of fMLP-induced elastase release. An antibody against Mac-1 (CD11b/CD18) prevented the potentiating effect of fibrinogen, suggesting that soluble fibrinogen potentiates fMLP-induced degranulating effect by a mechanism mediated by the integrin Mac-1. Fibrinogen enhanced fMLP-induced tyrosine phosphorylation in human neutrophils and markedly enhanced the phosphorylation of mitogen-activated protein kinases (MAPK) caused by fMLP. However, U0126, an inhibitor of p44/42 MAPK activation, or SB-203580, an inhibitor of p38 MAPK, did not alter the effect of fibrinogen on fMLP-induced elastase release. Wortmannin, a phosphatidylinositol 3-kinase (PI3K) kinase inhibitor, and genistein, a nonspecific tyrosine kinase inhibitor, strongly inhibited fMLP-induced elastase release both in the presence and in the absence of fibrinogen. An Akt/PKB inhibitor failed to alter the potentiating effect of fibrinogen, suggesting that the effect of fibrinogen is mediated by Akt-independent pathways. Go6976, an inhibitor of classical PKC isoforms, caused a significant inhibition of fMLP-induced elastase release in the presence or absence of fibrinogen, while nonselective inhibitors of PKC, Ro 31-8220, GF-109203X, and staurosporine, caused potentiation of fMLP-induced elastase release. We conclude that fibrinogen potentiation of primary granule release induced by fMLP is mediated by the integrin CD11b/CD18 through pathways dependent on PI3K and tyrosine kinases, but other regulatory mechanisms may be also involved.  相似文献   

8.
Gram-negative bacterial septicemia is a common clinical syndrome resulting, in part, from the activation of phagocytic leukocytes by LPS. By using flow cytometry, we have characterized LPS-induced expression of the beta 2 integrin CD11b/CD18. After exposure to Salmonella minnesota R595 LPS, expression of neutrophil CD11b/CD18 is rapidly upregulated, beginning within 5 min and achieving a peak fluorescence (typically two- to threefold over base line) by 30 min. The increase in CD11b/CD18 expression was similar in kinetics and magnitude to that produced by FMLP, PMA, and human rTNF-alpha. Concentrations of LPS necessary to stimulate a response were as low as 1 ng/ml of R595 LPS; a maximal response was observed between 30 and 100 ng/ml. The upregulation of CD11b/CD18 due to LPS was not interrupted by protein synthesis inhibitors. A group of glucosamine disaccharide lipid A-like molecules: Rhodobacter sphaeroides lipid A, lipid IVA, KDO2IVA, and deacylated LPS were able to block the stimulatory effect of LPS. This inhibition was specific for the actions of LPS as stimulation of polymorphonuclear leukocytes (PMN) by FMLP, human rTNF alpha, PMA, and rewarming were not altered by the disaccharide inhibitors. PMN which were exposed to the specific disaccharide LPS antagonists and then washed, were refractory to stimulation by LPS. The monosaccharide lipid A precursor lipid X also blocked stimulation of neutrophils by LPS, although with a 100-fold reduction in potency. Unlike the disaccharide inhibitors, PMN exposed to lipid X were still responsive to LPS stimulation after washing. The PMN response to LPS was less sensitive in the absence of serum, although upregulation of CD11b/CD18 could still be seen using higher concentrations of LPS. Monoclonal antibody directed against CD14 (clone 3C10), also specifically inhibited LPS induced PMN CD11b/CD18 expression both in the presence and absence of serum. These findings support the hypothesis that LPS stimulates neutrophils by interacting with specific cellular receptors.  相似文献   

9.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

10.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

11.
CD98 is a protein found on the surface of many activated cell types, and is implicated in the regulation of cellular differentiation, adhesion, growth, and apoptosis. Despite many studies addressing CD98 function, there is little information on the intracellular signalling pathways that mediate its activity. In this study, we examine protein kinase pathways that are activated following ligation by the CD98 antibody AHN-18, an antibody that induces U937 homotypic aggregation and inhibits antigen presenting activity and T-cell activation. Ligation by CD98 antibody AHN-18 induces tyrosine kinase activity, but inhibition of this activity does not affect U937 aggregation. Ligation also induces membrane translocation of the serine/threonine kinase novel PKCdelta, but not other members of the PKC family. Translocation is blocked by rottlerin, and this inhibitor also blocks aggregation. PKCdelta activation in turn mediates activation of ERK1/2 and p38, as well as tyrosine phosphorylation of multiple proteins, and MAPK activation is essential for cellular aggregation. One of the targets of CD98-induced tyrosine phosphorylation is itself PKCdelta, suggesting that this phosphorylation may act as a negative feedback to limit the overall activation of the CD98 pathway.  相似文献   

12.
Cocaine and its derivatives blunted responses of neutrophils (cell/cell aggregation, up-regulation of the receptor for C3bi (CR3, CD11b/CD18), generation of superoxide anion (O2-) and degranulation to various stimuli. The order of potency of these agents was the same as that for local anesthesia: tetracaine greater than bupivacaine greater than cocaine greater than lidocaine. Neutrophil aggregation elicited by the chemoattractant FMLP (10(-7) M) was inhibited by cocaine (10 mM) to 13.6 +/- 6% of control (p less than 0.002); the IC50 was approximately 4 mM. Cocaine and the other local anesthetics not only inhibited the upregulation of CR3 and O2- generation, but also blocked degranulation of cytochalasin B-treated cells. Cocaine (10 mM) reduced beta-glucuronidase and lysozyme secretion to 4.3 +/- 0.7 and 13 +/- 2.2% controls, respectively; its IC50 was 4 mM. Local anesthetics added after ligand/receptor engagement (FMLP) interrupted aggregation and halted generation of O2-. Moreover, local anesthetics rapidly inhibited aggregation, O2- generation, and degranulation elicited by PMA (1 microgram/ml) or the Ca ionophore A23187 (10 microM): the effects of cocaine could therefore not be attributed to unique actions at the FMLP receptor. Peak levels of intracellular Ca2+ ([Ca]i) at 5 to 10 s, and levels of [Ca]i 120 s after FMLP in Fura 2-loaded cells were significantly lower in cells treated with lidocaine, findings that could be explained by enhanced 45Ca2+ efflux from neutrophils. In cells loaded with bis(carboxyethyl)carboxyfluorescine (pH indicator) local anesthetics failed to affect the initial FMLP-induced (0 to 15 s) drop of pHi but inhibited the later (120 s) realkalinization of the cytosol (lidocaine, bupivacaine). Most remarkably, autoradiographs of SDS gels prepared from stimulated, 32P-labeled neutrophils treated with local anesthetics showed no difference from resting cells, either with respect to patterns of phosphorylation and dephosphorylation or their kinetics. Labeling of a 47-kDa protein, a component of the reduced nicotinamide-adenine dinucleotide phosphate-oxidase system, was unchanged. The effects of local anesthetics, which blunt neutrophil responses without affecting protein phosphorylation, suggest that protein phosphorylation is an insufficient signal for neutrophil activation. Inasmuch as cocaine and its derivatives affect cell functions at sites distal to activation of protein kinase C, these agents should prove useful in uncoupling protein phosphorylation from functional responses.  相似文献   

13.
Anti-human platelet p24/CD9 (p24/monoclonal antibody 7) causes the activation of platelets and in the presence of calcium induces platelet aggregation. Our studies suggest that platelet response to this antibody is mediated at least in part by the pertussis toxin-sensitive guanine nucleotide-binding proteins (G proteins) that stimulate phosphoinositide hydrolysis and inhibit adenylate cyclase. Prior exposure of saponin-treated platelets to anti-p24/CD9 inhibited the [32P] ADP-ribosylation of the alpha 41 protein by pertussis toxin. Platelet aggregation induced by this antibody is preceded by and/or accompanied by accelerated phosphatidylinositol turnover, the generation of inositol phosphates and diacylglycerol (DAG), calcium mobilization, and protein phosphorylation. The production of inositol phosphate(s) was measurable within 15 s of either anti-p24/CD9 or thrombin addition. Within 10 s of antibody addition (10 micrograms/ml), the level of DAG was 200% over that of the control and similar to that observed with 2 units/ml thrombin (201% over that of the control). Therefore, as it appears to be true for thrombin, platelet response upon binding of anti-p24/CD9 is primarily mediated by the activation of phospholipase C. When platelets pretreated with aspirin (200 microM) and apyrase (1 mg/ml) were subsequently exposed to anti-p24/CD9, aggregation still occurred. This indicates that neither secreted ADP nor thromboxane generation is required for this aggregation response. Using indo-1 and ratio cytofluorometry, we observed that an increase in platelet cytosolic calcium is a relatively early event and occurs in either the presence or absence of calcium in the external media. Phosphorylation studies of platelet proteins showed that anti-p24/CD9 binding to platelets caused increased phosphorylation of four proteins with apparent molecular masses of 50,000, 47,000, 36,000, and 20,000 daltons. These studies suggest that platelet activation mediated by the surface protein p24/CD9 is mainly through the stimulation of a phospholipase C, the activation of which is responsible for the generation of second messengers inositol trisphosphate and DAG.  相似文献   

14.
CD11b/CD18 (Mac-1) is a member of the leukocyte integrin family, a group of receptors that have been implicated in various effector functions and cellular collaboration in the immune response. It has been shown previously that CD11b/CD18 on cells of monocyte and myeloid lineage appears to undergo rapid activation and acquire new functional receptor specificities after exposure to selected agonists such as adenosine diphosphate (ADP). We now show that ADP induces a reconformation of the CD11b/CD18 receptor with exposure of new epitopes characteristics of this activated state. By direct binding studies, flow cytometry, and immunoprecipitation experiments, it has been found that the mAb 7E3 reacts with CD11b/CD18 only after ADP-stimulation of the cell suspension. The activated state of CD11b/CD18 induced by ADP and recognized by 7E3 can also be recapitulated by agonists inducing transients in cytosolic Ca2+ such as the chemoattractant FMLP. Moreover, this process of receptor activation does not involve quantitative mobilization of the subcellular storage pool of CD11b/CD18 to the plasma membrane. Because 7E3 also recognizes a qualitative, ADP-mediated activated state of the platelet adhesion receptor GP IIb/IIIa, it is suggested that transients in cytosolic Ca2+ might represent early secondary events for a general pathway of rapid activation of integrin receptors and, as such, represent important signals for cellular interactions in the immune response.  相似文献   

15.
In this study, we showed that human monocytes produced TNF-alpha in response to zymosan, a particulate agonist. Protein kinase C (PKC) seems to play a regulatory role in zymosan-induced TNF-alpha secretion. The pretreatment of monocytes with PMA induced a dose-dependent inhibition of zymosan-stimulated TNF production. This inhibition was likely due to an activation of PKC because it was prevented by inhibitors of PKC, sphingosine, and staurosporine. Moreover, PMA elicited a profound down-modulation of zymosan binding to monocytes. The inhibition of zymosan binding and TNF production displayed similar dose-dependence, suggesting that both events were closely related. In addition, PMA did not modify the expression of CD11b/CD18 receptor that is involved in zymosan recognition. In view of these findings, qualitative changes of CD11b/CD18 molecules might account for the inhibition of zymosan binding and TNF production. Thus, PMA specifically increased the association of CD11b/CD18 with the detergent-insoluble cytoskeleton. Cytochalasin B but not microtubule disrupters, nocodazole and colchicine, partially prevented the inhibition of zymosan binding. Hence, the inhibitory action of PMA on zymosan binding seems to be mediated by an increase in attachment of zymosan receptor to cytoskeleton and more likely to microfilaments. The regulatory activity of PKC might represent a first way of limiting cytokine over-production in response to pathogens which interact with monocytes via CD11/CD18 molecules.  相似文献   

16.
Folkesson, Hans G., and Michael A. Matthay. Inhibitionof CD18 or CD11b attenuates acute lung injury after acid instillation in rabbits. J. Appl. Physiol. 82(6):1743-1750, 1997.Acid-induced lung injury is mediatedprimarily by activated neutrophils. Although a prior study demonstratedthat acid-induced neutrophil influx into the air spaces was not CD18dependent, we hypothesized that either a neutralizing anti-CD18monoclonal antibody (MHM23) or a neutrophil inhibitory factor (NIF),NIF (CD11b,18), might attenuate acid-induced lung injury in rabbits byinterfering with neutrophil activation. This hypothesis derived from invitro studies that reported that anti-CD18 therapy prevented tumornecrosis factor--induced neutrophil activation. Hydrochloric acid(pH = 1.5 in one-third normal saline) or one-third normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetizedrabbits. The rabbits were studied for 6 h. In acid-instilled rabbitswithout the anti-CD18 monoclonal antibody or NIF (CD11b,18), severelung injury developed. In acid-instilled rabbits, pretreatment (5 minbefore acid) with the anti-CD18 monoclonal antibody (2 mg/kg iv) orpretreatment with the NIF (anti-CD11b,18, 10 mg/kg iv) prevented50-70% of acid-induced abnormalities in oxygenation, the increasein extravascular lung water, and extravascular protein accumulation.The anti-CD18 monoclonal antibody was associated with a significantincrease in air space neutrophils by bronchoalveolar lavage, suggesting that the neutrophils respond normally to chemotactic stimuli but thatthe neutrophils did not injure the lung even though they accumulated inthe air spaces. In summary, neutralization of CD18 attenuates the acutelung injury after acid instillation without reducing the number ofneutrophils in the air spaces, suggesting that anti-CD18 therapy may bebeneficial because of its capacity to reduce neutrophil activation.

  相似文献   

17.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   

18.
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.  相似文献   

19.
Four members of the carcinoembryonic Ag family, CD66a, CD66b, CD66c, and CD66d, are expressed on human neutrophils. CD66a, CD66b, CD66c, and CD66d Ab binding to the neutrophil surface triggers an activation signal that regulates the adhesive activity of CD11/CD18, resulting in an increase in neutrophil adhesion to HUVEC. To identify active sites on the CD66a Ag, molecular modeling was performed using IgG and CD4 as models, and 28 peptides of 14 aa in length were synthesized that were predicted to be present at loops and turns between beta-sheets. The peptides were tested for their ability to alter neutrophil adhesion to HUVEC. Three peptides, each from the N-terminal domain, increased neutrophil adhesion to HUVEC monolayers. This increase in neutrophil adhesion caused by CD66a peptides was associated with up-regulation of CD11/CD18 and down-regulation of CD62L on the neutrophil surface. Scrambled versions of these three peptides had no effect on neutrophil adhesion to the endothelial cells. The data suggest that peptide motifs from at least three regions of the N-terminal domain of CD66a are involved in the interaction of CD66a with other ligands and can initiate signal transduction in neutrophils.  相似文献   

20.
Preincubation of aspirin-treated human platelets with butylated hydroxytoluene (BHT) inhibits secretion, aggregation, and protein phosphorylation induced by dioctanoylglycerol or phorbol 12-myristate 13-acetate (PMA). BHT alone elicits a rapid and transient phosphorylation of a 47-kDa protein, which is indistinguishable from the well-recognized major substrate of protein kinase C (PKC). Inhibition of diacylglycerol- or PMA-induced platelet activation is also observed after decay to the basal level of the BHT-evoked phosphorylation of the 47-kDa protein. By contrast BHT potentiates platelet responses elicited by the calcium ionophore ionomycin. In the presence of the PKC inhibitor staurosporine BHT fails to increase the ionomycin-promoted platelet aggregation, indicating that its effect occurs through a PKC activation, even if no correlation with the 47-kDa protein phosphorylation is observed. BHT does not significantly modify the affinity of protein kinase C purified from calf brain for Ca2+ or dioctanoylglycerol. It is concluded that: (a) a short exposure of platelets to BHT induces an activation, whereas a long exposure an inhibition of PKC, (b) at variance with diacylglycerols BHT decreases the platelet responses promoted by subsequent challenge with PKC activators themselves, and (c) similarly to other PKC activators BHT potentiates the cellular response elicited by calcium ionophores most likely by activating the phospholipase A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号