首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-to-cell communication is essential for the development and maintenance of multicellular organisms. The tunneling nanotube (TNT) is a recently recognized distinct type of intercellular communication device. TNTs are thin protrusions of the plasma membrane and allow direct physical connections of the plasma membranes between remote cells. The proposed functions for TNTs include the cell-to-cell transfer of large cellular structures such as membrane vesicles and organelles, as well as signal transduction molecules in a wide variety of cell types. Moreover TNT and TNT-related structures are thought to facilitate the intercellular spreading of virus and/or pathogenic proteins. Despite their contribution to normal cellular functions and importance in pathological conditions, virtually nothing is known about the molecular basis for their formation. We have recently shown that M-Sec (also called TNFaip2) is a key molecule for TNT formation. In cooperation with the RalA small GTPase and the exocyst complex, M-Sec can induce the formation of functional TNTs, indicating that the remodeling of the actin cytoskeleton and vesicle trafficking are involved in M-Sec-mediated TNT formation. Discovery of the role of M-Sec will accelerate our understanding of TNTs, both at the molecular and physiological levels.  相似文献   

2.
The art of cellular communication: tunneling nanotubes bridge the divide   总被引:1,自引:0,他引:1  
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes.  相似文献   

3.
Transfer of cellular material via tunneling nanotubes (TNT) was recently discovered as a novel mechanism for intercellular communication. The role of intercellular exchange in communication of renal epithelium is not known. Here we report extensive spontaneous intercellular exchange of cargo vesicles and organelles between primary human proximal tubular epithelial cells (RPTEC). Cells were labeled with two different quantum dot nanocrystals (Qtracker 605 or 525) and intercellular exchange was quantified by high-throughput fluorescence imaging and FACS analysis. In co-culture, a substantial fraction of cells (67.5%) contained both dyes indicating high levels of spontaneous intercellular exchange in RPTEC. The double positive cells could be divided into three categories based on the preponderance of 605 Qtracker (46.30%), 525 Qtracker (48.3%) and approximately equal content of both Qtrackers (4.57%). The transfer of mitochondria between RPTECs was also detected using an organelle specific dye. Inhibition of TNT genesis by actin polymerization inhibitor (Latrunculin B) markedly reduced intercellular exchange (>60%) suggesting that intercellular exchange in RPTEC was in part mediated via TNT-like structures. In contrast, induction of cellular stress by Zeocin treatment increased tube-genesis in RPTEC. Our data indicates an unexpected dynamic of intercellular communication between RPTEC by exchange of cytosolic material, which may play an important role in renal physiology.  相似文献   

4.
Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell–cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.  相似文献   

5.
Tunneling nanotube (TNT)-like structures are intercellular membranous bridges that mediate the transfer of various cellular components including endocytic organelles. To gain further insight into the magnitude and mechanism of organelle transfer, we performed quantitative studies on the exchange of fluorescently labeled endocytic structures between normal rat kidney (NRK) cells. This revealed a linear increase in both the number of cells receiving organelles and the amount of transferred organelles per cell over time. The intercellular transfer of organelles was unidirectional, independent of extracellular diffusion, and sensitive to shearing force. In addition, during a block of endocytosis, a significant amount of transfer sustained. Fluorescence microscopy revealed TNT-like bridges between NRK cells containing F-actin but no microtubules. Depolymerization of F-actin led to the disappearance of TNT and a strong inhibition of organelle exchange. Partial ATP depletion did not affect the number of TNT but strongly reduced organelle transfer. Interestingly, the myosin II specific inhibitor S-(−)-blebbistatin strongly induced both organelle transfer and the number of TNT, while the general myosin inhibitor 2,3-butanedione monoxime induced the number of TNT but significantly inhibited transfer. Taken together, our data indicate a frequent and continuous exchange of endocytic organelles between cells via TNT by an actomyosin-dependent mechanism.  相似文献   

6.
Osteoclasts are the multinucleated giant cells formed by cell fusion of mononuclear osteoclast precursors. Despite the finding of several membrane proteins involving DC‐STAMP as regulatory proteins required for fusion among osteoclast precursors, cellular and molecular events concerning this process are still ambiguous. Here we identified Tunneling Nanotubes (TNTs), long intercellular bridges with small diameters, as the essential cellular structure for intercellular communication among osteoclast precursors in prior to cell fusion. Formation of TNTs was highly associated with osteoclastogenesis and it was accompanied with the significant induction of the M‐Sec gene, an essential gene for TNT formation. M‐Sec gene expression was significantly upregulated by RANKL‐treatment in osteoclast precursor cell line. Blockage of TNT formation by Latrunclin B or by M‐Sec siRNA significantly suppressed osteoclastogenesis. We have detected the rapid intercellular transport of not only the membrane phospholipids labeled with DiI but also the DC‐STAMP‐GFP fusion protein through TNTs formed among osteoclast precursors during osteoclastogenesis. Transportation of such regulatory molecules through TNTs would be essential for the process of the specific cell fusion among osteoclast precursors. J. Cell. Biochem. 114: 1238–1247, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We investigate properties of a reported new mechanism for cell–cell interactions, tunneling nanotubes (TNT’s). TNT’s mediate actin-based transfer of vesicles and organelles and they allow signal transmission between cells. The effects of lateral pulling with polystyrene beads trapped by optical tweezers on TNT’s linking separate U-87 MG human glioblastoma cells in culture are described. This cell line was chosen for handling ease and possible pathology implications of TNT persistence in communication between cancerous cells. Observed nanotubes are shown to have the characteristic features of TNT’s. We find that pulling induces two different types of TNT bifurcations. In one of them, termed V-Y bifurcation, the TNT is first distorted into a V-shaped form, following which a new branch emerges from the apex. In the other one, termed I-D bifurcation, the pulled TNT is bent into a curved arc of increasingly broader span. Curves showing the variation of pulling force with displacement are obtained. Results yield information on TNT structure and elastic properties. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Cell–cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.  相似文献   

10.
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)—“Rhes tunnels”—that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.  相似文献   

11.
12.

Background

HIV infection affects the populations of T helper cells, dendritic cells and macrophages. Moreover, it has a serious impact on the central nervous system. It is yet not clear whether this list is complete and why specifically those cell types are affected. To address this question, we have developed a method to identify cellular surface proteins that permit, mediate or enhance HIV infection in different cell/tissue types in HIV-infected individuals. Receptors associated with HIV infection share common functions and domains and are involved in similar cellular processes. These properties are exploited by bioinformatics techniques to predict novel cell surface proteins that potentially interact with HIV.

Methodology/Principal Findings

We compiled a set of surface membrane proteins (SMP) that are known to interact with HIV. This set is extended by proteins that have direct interaction and share functional similarity. This resulted in a comprehensive network around the initial SMP set. Using network centrality analysis we predict novel surface membrane factors from the annotated network. We identify 21 surface membrane factors, among which three have confirmed functions in HIV infection, seven have been identified by at least two other studies, and eleven are novel predictions and thus excellent targets for experimental investigation.

Conclusions

Determining to what extent HIV can interact with human SMPs is an important step towards understanding patient specific disease progression. Using various bioinformatics techniques, we generate a set of surface membrane factors that constitutes a well-founded starting point for experimental testing of cell/tissue susceptibility of different HIV strains as well as for cohort studies evaluating patient specific disease progression.  相似文献   

13.
Tunneling nanotubes (TNTs) are nanoscaled, F-actin containing membrane tubes that connect cells over several cell diameters. They facilitate the intercellular exchange of diverse components ranging from small molecules to organelles and pathogens. In conjunction with recent findings that TNT-like structures exist in tissue, they are expected to have important implications in cell-to-cell communication. In this review we will focus on a new function of TNTs, namely the transfer of electrical signals between remote cells. This electrical coupling is not only determined by the biophysical properties of the TNT, but depends on the presence of connexons interposed at the membrane interface between TNT and the connected cell. Specific features of this coupling are compared to conventional gap junction communication. Finally, we will discuss possible down-stream signaling pathways of this electrical coupling in the recipient cells and their putative effects on different physiological activities. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

14.
Tunneling nanotubes (TNTs), open membranous channels between connected cells, represent a novel direct way of communication between distant cells for the diffusion of various cellular material, including survival or death signals, genetic material, organelles, and pathogens. Their discovery prompted us to review our understanding of many physiological and pathological processes involving cellular communication but also allowed us to discover new mechanisms of communication at a distance. While this has enriched the field, it has also generated some confusion, as different TNT-like protrusions have been described, and it is not clear whether they have the same structure–function. Most studies have been based on low-resolution imaging methods, and one of the major problems is the inconsistency in demonstrating the capacity of these various connections to transfer material between cells belonging to different populations. This brief review examines the fundamental properties of TNTs. In adult tissues, TNTs are stimulated by different diseases, stresses, and inflammatory signals. ‘Moreover’, based on the similarity of the processes of development of synaptic spines and TNT formation, we argue that TNTs in the brain predate synaptic transmission, being instrumental in the orchestration of the immature neuronal circuit.  相似文献   

15.
The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV) vector. This approach identified a role for 3′-phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1), one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR) promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.  相似文献   

16.
17.
Membrane nanotubes are a recently discovered form of cellular protrusion between two or more cells whose functions include cell communication, environmental sampling, and protein transfer. Although clearly demonstrated in vitro, evidence of the existence of membrane nanotubes in mammalian tissues in vivo has until now been lacking. Confocal microscopy of whole-mount corneas from wild-type, enhanced GFP chimeric mice, and Cx3cr1(gfp) transgenic mice revealed long (>300 microm) and fine (<0.8 microm diameter) membrane nanotube-like structures on bone marrow-derived MHC class II(+) cells in the corneal stroma, some of which formed distinct intercellular bridges between these putative dendritic cells. The frequency of these nanotubes was significantly increased in corneas subjected to trauma and LPS, which suggests that nanotubes have an important role in vivo in cell-cell communication between widely spaced dendritic cells during inflammation. Identification of these novel cellular processes in the mammalian cornea provides the first evidence of membrane nanotubes in vivo.  相似文献   

18.
在建立TNT大鼠白内障的基础上,用HPLC分析了晶状体内TNT及其代谢产物,并用ESR及NBT方法检测了TNT在晶状体内的代谢过程所产生的自由基。结果表明,慢性染毒24个月的大鼠白内障晶状体内含有TNT原形和4氨基2,6二硝基甲苯代谢产物,以及在体外与正常晶状体微粒体孵育可产生TNT硝基阴离子自由基和超氧阴离子自由基。上述结果提示,TNT可进入晶状体内,在其还原代谢过程中产生硝基阴离子自由基中间产物,在有氧条件下进而产生超氧阴离子自由基,这可能是TNT导致白内障的启动因素。  相似文献   

19.
Tunneling nanotubes (TNTs) are actin‐rich structures that connect two or more cells and mediate cargo exchange between spatially separated cells. TNTs transport signaling molecules, vesicles, organelles, and even pathogens. However, the molecular mechanisms regulating TNT formation remain unclear and little is known about the endogenous mechanisms suppressing TNT formation in lung cancer cells. Here, we report that MICAL2PV, a splicing isoform of the neuronal guidance gene MICAL2, is a novel TNT regulator that suppresses TNT formation and modulates mitochondrial distribution. MICAL2PV interacts with mitochondrial Rho GTPase Miro2 and regulates subcellular mitochondrial trafficking. Moreover, down‐regulation of MICAL2PV enhances survival of cells treated with chemotherapeutical drugs. The monooxygenase (MO) domain of MICAL2PV is required for its activity to inhibit TNT formation by depolymerizing F‐actin. Our data demonstrate a previously unrecognized function of MICAL2 in TNT formation and mitochondrial trafficking. Furthermore, our study uncovers a role of the MICAL2PV‐Miro2 axis in mitochondrial trafficking, providing a mechanistic explanation for MICAL2PV activity in suppressing TNT formation and in modulating mitochondrial subcellular distribution.  相似文献   

20.
TNT-induced cellular responses and proteomes in Pseudomonas sp. HK-6 were comparatively analyzed in two different media: basal salts (BS) and Luria broth (LB). HK-6 cells could not degrade more than 0.5 mM TNT with BS medium, while in LB medium, they exhibited the enhanced capability to degrade as much as 3.0 mM TNT. Analysis of total cellular fatty acids in HK-6 cells suggested that the relative abundance of several saturated or unsaturated fatty acids is altered under TNT-mediated stress conditions. Scanning electron microscopy showed the presence of perforations, irregular rod formations, and wrinkled extracellular surfaces in cells under TNT stress. Proteomic analysis of soluble protein fractions from HK-6 cultures grown with TNT as a substrate revealed 11 protein spots induced by TNT. Among these, seven proteins (including Alg8, AlgB, NirB, and the AhpC/Tsa family) were detected only in LB medium containing TNT. The proteins AspS, Tsf, and assimilatory nitrate reductase were increasingly expressed only in BS medium containing TNT. The protein dGTPase was found to be induced and expressed when cells were grown in either type of TNT-containing media. These results provide a better understanding of the cytotoxicity and survival mechanism used by Pseudomonas sp. HK-6 when placed under TNT stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号