首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential precipitation of human plasma by ethanol is one of the most important processes for purifying therapeutic proteins, including human serum albumin. Better understanding of the effects of ethanol on the structure and stability of proteins is critical for effective and safe application of ethanol-induced protein precipitation. Here, we examined the effects of ethanol on the structure and solubility of bovine serum albumin (BSA) and SH-modified BSA. Ethanol caused BSA denaturation in a bimodal fashion, i.e., reduction of α-helix at low concentration and subsequent induction of the α-helical structure at higher concentration. In contrast, the solubility of BSA decreased monotonically. The secondary structure of SH-modified BSA was different from that of native BSA. Ethanol resulted in enhanced secondary structures of SH-modified BSA and decreased solubility monotonically. These results suggest the favorable interaction of ethanol with hydrophobic residues, leading to protein denaturation, but the unfavorable interaction with charged residues, leading to a reduction of protein solubility.  相似文献   

2.
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
A simple adaptation of a commercial spectrofluorometer allows selective excitation of fluorescent biomolecules adsorbed to a solid surface while they are in equilibrium with a bulk solution. As a demonstration of this technique, we have detected a change in the effective singlet-singlet energy transfer in fluorescence-labeled bovine serum albumin (BSA) upon adsorption to a fused silica surface. The technique combines total internal reflection fluorescence excitation of surface-adsorbed BSA with a fluorescence spectroscopic examination of energy transfer between two different fluorophores that are covalently bound to amino groups in each BSA molecule. Two donor--acceptor pairs were used, 4-chloro-7-nitro-2,1,3-benzoxadiazole-rhodamine and dansyl-eosin. For studies of surface-adsorbed BSA, we constructed a device in which the excitation light of a standard fluorescence spectrometer totally internally reflects from a surface at which adsorbed BSA is in equilibrium with the bulk solution. A shallow evanescent wave is created, which excites fluorescence from only those BSA molecules in close proximity to the surface. Spectral examination shows significantly less effective singlet-singlet energy transfer from the donor to the acceptor in surface-adsorbed BSA relative to that in native bulk-dissolved BSA. Under appropriate and reasonable assumptions, the energy transfer change between native and adsorbed states of fluorescent BSA can be interpreted as a conformational change of BSA upon adsorption.  相似文献   

4.
A new circular dichroism (CD) technique is presented which quantifies, in situ, the changes in protein and peptide secondary structure upon adsorption at the quartz/liquid interface. Far-UV CD spectra of adsorbed proteins were recorded from several quartz interfaces contained in a specially constructed cell. Adsorbed, oriented alpha-helical spectra were recorded from hydrophilic and hydrophobic quartz using the bee venom peptide, melittin, which can be induced into an alpha-helical, tetrameric conformation in solution. The hydrophobic quartz provides a model system for oil-in-water emulsions and cell membranes. Surface concentrations were determined by radio-counting and were dependent on the nature of the surface. The characterization of these spectra has been partly achieved using far-UV CD spectra obtained from melittin adsorbed onto hydrophilic colloidal silica particles, where orientation effects are eliminated. Analysis of these spectra reveals considerable denaturation of the helical structures upon adsorption. Surface concentrations from the silica were determined from adsorption isotherms. The surface orientation of adsorbed melittin was dependent on the state of aggregation and hence degree of helicity of the molecule. These results support a model for the mode of action of melittin in lysing membranes.  相似文献   

5.
The thermostable tailspike endorhamnosidase of bacteriophage P22 has been investigated by laser Raman spectroscopy to determine the protein's secondary structure and the basis of its thermostability. The conformation of the native tailspike, determined by Raman amide I and amide III band analyses, is 52 to 61% beta-sheet, 24 to 27% alpha-helix, 15 to 21% beta-turn and 0 to 10% other structure types. The secondary structure of the wild-type tailspike, as monitored by the conformation-sensitive Raman amide bands, was stable to 80 degrees C, denatured reversibly between 80 and 90 degrees C, and irreversibly above 90 degrees C. The purified native form of a temperature-sensitive folding mutant (tsU38) contains secondary structures virtually identical to those in the wild-type in aqueous solution at physiological conditions (0.05 M-Na+ (pH 7.5], at both permissive (20 degrees C) and restrictive (40 degrees C) temperatures. This supports previous results showing that the mutational defect at 40 degrees C affects intermediates in the folding pathway rather than the native structure. At temperatures above 60 degrees C the wild-type and mutant forms were distinguishable: the reversible and irreversible denaturation thresholds were approximately 15 to 20 degrees C lower in the mutant than in the wild-type protein. The irreversible denaturation of the mutant tailspikes led to different aggregation/polymerization products from the wild-type, indicating that the mutation altered the unfolding pathway. In both cases only a small percentage of the native secondary structure was altered by irreversible thermal denaturation, indicating that the aggregated states retain considerable native structure.  相似文献   

6.
The effect of average pore size of nano-pore silica particles on protein adsorption characteristics was determined experimentally by the dissociation constant and the adsorption capacity determined from the Langmuir equation. As the average pore size was increased from 2.2 to 45 nm, the BSA adsorption capacity increased from 16.8 to 84.3 mg/g-silica so as the equilibrium constant (from 2.6 to 9.4 mg/ml). Using confocal microscopy with fluorescence labeling, we could visualize the protein adsorption in situ and determine the minimum pore size required for efficient intraparticle adsorption. The confocal microscopy analysis revealed that BSA was adsorbed mainly on the surface of the particles with a smaller pore size, but diffused further into the interstitial surface when it was sufficiently large. It was concluded that for BSA whose Stoke's diameter is ca. 3.55 nm the minimum pore size of about 45 nm or larger was required for a sufficient adsorption capacity.  相似文献   

7.
Vibrational circular dichroism (VCD) spectroscopy has been used for the first time to investigate the thermal denaturation of proteins in H(2)O solutions. Films prepared from heated aqueous solutions were used for these investigations. A well-known alpha-helical protein, bovine serum albumin (BSA), is used for this first study. Both VCD and infrared absorption results obtained for BSA films indicate that the heat treatment of BSA induces significant amounts of beta-sheet structure and that the denaturation process is irreversible. To verify the irreversible nature of thermal denaturation, optical rotation was also measured as a function of temperature in both heating and cooling cycles. These results also indicate that thermal denaturation of BSA in solution is irreversible. This study establishes the usefulness of films for VCD investigations and offers new avenues for VCD studies on biologically important systems.  相似文献   

8.
Although the thermal unfolding/aggregation behavior of proteins in solution has been extensively studied, little is known about proteins immobilized on the surface of nanoparticles and other solid-phase materials. In this study we carefully monitor and analyze the thermal denaturation process of three model proteins adsorbed onto aluminum hydroxide as a function of temperature by FT-IR spectroscopy. The results reveal that the proteins immobilized onto aluminum hydroxide retain their native conformation at lower temperatures (<45 °C). Upon thermal denaturation, the structural transition between the native and denatured states is very similar, in terms of disappearance of the major native secondary structural elements, between the proteins adsorbed onto aluminum hydroxide adjuvant and in solution. This result suggests that the thermal stability of proteins is not significantly affected, or marginally affected at most, by the adsorption onto aluminum hydroxide adjuvant, considering a 5 °C temperature interval used for data collection. However, the adsorption rate and crowding of proteins on aluminum hydroxide particles have a profound effect on the aggregation behavior of the proteins, hydrogen bonding strength of intermolecular β-sheet aggregates and conformation of intermediate states.  相似文献   

9.
The effect of differences in the degree of hydrophobicity of protein patches/fragments on the adsorption behaviour of the protein is investigated. The adsorption isotherm of a monoclonal mouse anti-human immunoglobulin G (isotype 2b) onto hydrophobic Teflon particles is measured using a depletion method. The adsorption-induced denaturation of the immunoglobulin as a function of the adsorbed amount is studied by differential scanning calorimetry, and the corresponding rearrangements in the secondary structure of the whole IgG molecule and its F(ab) and F(c) fragments are determined by circular dichroism spectroscopy. The effects of adsorption on the F(ab) and F(c) fragments in the intact IgG molecule occur independently. Adsorption of the whole IgG molecule leads to denaturation of the F(ab) fragments, whereas the F(c) fragment remains unperturbed; adsorption of the isolated fragments results in structural changes in both F(ab) and F(c). The surface hydrophobicity of the isolated fragments was studied by HPLC. These experiments support the hypothesis that differences in the degree of denaturation between F(ab) and F(c) are due to the higher degree of hydrophobicity of the F(ab) fragment. The adsorption-induced changes in the secondary structure are more prominent for the isolated fragments as compared to intact IgG. This is ascribed to the higher flexibility of the isolated fragment, as compared to the fragment in the whole molecule.  相似文献   

10.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

11.
The effect of differences in the degree of hydrophobicity of protein patches/fragments on the adsorption behaviour of the protein is investigated. The adsorption isotherm of a monoclonal mouse anti-human immunoglobulin G (isotype 2b) onto hydrophobic Teflon particles is measured using a depletion method. The adsorption-induced denaturation of the immunoglobulin as a function of the adsorbed amount is studied by differential scanning calorimetry, and the corresponding rearrangements in the secondary structure of the whole IgG molecule and its Fab and Fc fragments are determined by circular dichroism spectroscopy. The effects of adsorption on the Fab and Fc fragments in the intact IgG molecule occur independently. Adsorption of the whole IgG molecule leads to denaturation of the Fab fragments, whereas the Fc fragment remains unperturbed; adsorption of the isolated fragments results in structural changes in both Fab and Fc. The surface hydrophobicity of the isolated fragments was studied by HPLC. These experiments support the hypothesis that differences in the degree of denaturation between Fab and Fc are due to the higher degree of hydrophobicity of the Fab fragment. The adsorption-induced changes in the secondary structure are more prominent for the isolated fragments as compared to intact IgG. This is ascribed to the higher flexibility of the isolated fragment, as compared to the fragment in the whole molecule.  相似文献   

12.
Biocomposite thin films assembled on colloidal particles by means of layer-by-layer adsorption have been suggested as drug carriers and diagnostic devices. Protamine (PRM)/dextransulfate (DXS) and protamine/bovine serum albumine (BSA) multilayers were fabricated on colloidal silica and subsequently investigated by means of fluorescence activated cell sorting (FACS) and microelectrophoresis. Fluorescein labeled polyelectrolytes were embedded at different positions in the multilayers as a marker for layer growth. FACS showed that PRM and DXS formed regular growing stable multilayers, yet adsorbed PRM can be nevertheless exchanged with PRM in solution during layer formation and also after the multilayer formation has been completed. Up to 90% of the PRM pool was available for exchange. PRM together with BSA as demonstrated by SFM did not form multilayers under the applied conditions although the zeta-potential, commonly used as an indicator for stepwise adsorption, observed characteristic alternations. The capability of bound PRM to exchange with PRM in solution is attributed to its relatively small size. The demonstrated exchange may have importance in designing multilayers with smart release features. Furthermore, FACS proved to be a rather suitable means to quantify the aggregation behavior during coating and washing. Singulets, doublets, triplets, and aggregates of higher order could be clearly resolved. The aggregation of particles coated with PRM/DXS layers was higher than that of silica particles coated with PAH/PSS layers. In the first case about 50% of all recorded events are attributed to aggregats, while the PAH/PSS coating produced only about 10% aggregates.  相似文献   

13.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures.  相似文献   

14.
Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.  相似文献   

15.
The spatial organization of actinoporin RTX-SII from the sea anemone Radianthus macrodactylus on the level of tertiary and secondary structures was studied by UV and CD spectroscopy and intrinsic protein fluorescence. The specific and molar extinction coefficients of RTX-SII were determined. The percentages of canonical secondary structures of actinoporin were calculated. The tertiary structure of the polypeptide is well developed and its secondary structure is highly ordered and contains about 50% antiparallel folded beta-sheets. The irreversible thermal denaturation of RTX-SII was studied by CD spectroscopy; a conformational transition occurs at 53 degrees C. Above this temperature irreversible conformational changes are observed in the secondary and tertiary structures. This is accompanied by redistribution of the content of regular and distorted forms of beta-sheet and also by increase in the content of an unordered form. It is suggested that an intermediate is formed in the process of thermal denaturation. Acid-base titration of RTX-SII results in irreversible conformational changes at pH below 2.0 and above 12.0. As shown by intrinsic protein fluorescence, tyrosine residues of RTX-SII make a fundamental contribution to emission, and the total fluorescence depends more on temperature and ionic strength of the solution than tryptophan fluorescence. The data on conformational stability of actinoporin are correlated with data on its hemolytic activity. Activity of RTX-SII significantly decreases at increased temperature and slightly decreases at low pH. Hemolytic activity drastically increases at high pH. Increase in the actinoporin activity at pH above 10 seems to be caused by ionization of the molecule.  相似文献   

16.
The stability of several protein systems of interest has been shown to have a kinetic basis. Besides the obvious biotechnological implications, the general interest of understanding protein kinetic stability is emphasized by the fact that some emerging molecular approaches to the inhibition of amyloidogenesis focus on the increase of the kinetic stability of protein native states. Lipases are among the most important industrial enzymes. Here, we have studied the thermal denaturation of the wild-type form, four single-mutant variants and two highly stable, multiple-mutant variants of lipase from Thermomyces lanuginosa. In all cases, thermal denaturation was irreversible, kinetically controlled and conformed to the two-state irreversible model. This result supports that the novel molecular-dynamics-focused, directed-evolution approach involved in the preparation of the highly stable variants is successful likely because it addresses kinetic stability and, in particular, because heated molecular dynamics simulations possibly identify regions of disrupted native interactions in the transition state for irreversible denaturation. Furthermore, we find very large mutation effects on activation enthalpy and entropy, which were not accompanied by similarly large changes in kinetic urea m-value. From this we are led to conclude that these mutation effects are associated to some structural feature of the transition state for the irreversible denaturation process that is not linked to large changes in solvent accessibility. Recent computational studies have suggested the existence of solvation/desolvation barriers in at least some protein folding/unfolding processes. We thus propose that a solvation barrier (arising from the asynchrony between breaking of internal contacts and water penetration) may contribute to the kinetic stability of lipase from T. lanuginosa (and, possibly, to the kinetic stability of other proteins as well).  相似文献   

17.
Ahmad A  Akhtar MS  Bhakuni V 《Biochemistry》2001,40(7):1945-1955
Glucose oxidase (GOD) from Aspergillus niger is an acidic dimeric enzyme having a high degree of localization of negative charges on the enzyme surface and dimer interface. We have studied the effect of monovalent cations on the structure and stability of GOD using various optical spectroscopic techniques, limited proteolysis, size exclusion chromatography, differential scanning calorimetry, and enzymic activity measurements. The monovalent cations were found to influence the enzymic activity and tertiary structure of GOD, but no effect on the secondary structure of the enzyme was observed. The monovalent cation-stabilized GOD was found to have a more compact dimeric structure but lower enzymic activity than the native enzyme. The enzyme's K(m) for D-glucose was found to be slightly enhanced for the monovalent cation-stabilized enzyme (maximum enhancement of about 35% for LiCl) as compared to native GOD. Comparative denaturation studies on the native and monovalent cation-stabilized enzyme demonstrated a significant resistance of cation-stabilized GOD to urea (about 50% residual activity at 6.5 M urea) and thermal denaturation (Delta T(m) maximum of 10 degrees C compared to native enzyme). However, pH-induced denaturation showed a destabilization of monovalent cation-stabilized GOD as compared to the native enzyme. The effectiveness of monovalent cations in stabilizing GOD structure against urea and thermal denaturation was found to follow the Hofmeister series: K(+) > Na(+) > Li(+).  相似文献   

18.
The effect of different molar ratios of polyethylene glycol (PEG) on the conformational stability of protein, bovine serum albumin (BSA), was studied. The binding of PEG with BSA was observed by fluorescence spectroscopy by measuring the fluorescence intensity after displacement of PEG with chromophore ANS and had further been confirmed by measuring the intrinsic fluorescence of tryptophan residues of BSA. Co-lyophilization of BSA with PEG at optimum BSA:PEG molar ratio led to the formation of the stable protein particles. Circular dichroism (CD) spectroscopy study suggested that a conformational change had occurred in the protein after PEG interaction and demonstrated the highest stability of protein at the optimum BSA:PEG molar ratio of 1:0.75. Additional differential scanning calorimetry (DSC) study suggested strong binding of PEG to protein leading to thermal stability at optimum molar ratio. Molecular mechanism operating behind the polyethylene glycol (PEG) mediated stabilization of the protein suggested that strong physical adsorption of PEG on the hydrophobic core of the protein (BSA) along with surface adsorption led to the stability of protein.  相似文献   

19.
This study represents the first physicochemical analysis of the recently cloned methionine repressor protein (Met aporepressor) from Escherichia coli. Infrared spectrometry was used to investigate the secondary structure and the hydrogen-deuterium exchange behavior of the E. coli Met aporepressor. The secondary structure of the native bacterial protein was derived by analysis of the amide I mode. The amide I band contour was found to consist of five major component bands (at 1625, 1639, 1653, 1665, and 1676 cm-1) which reflect the presence of various substructures. The relative areas of these component bands are consistent with a high alpha-helical content of the peptide chain secondary structure in solution (43%) and a small amount of beta-sheet structure (7%). The remaining substructure is assigned to turns (10%) and to unordered (or less ordered) structures (40%). The temperature dependence of the infrared spectra of native Met aporepressor in D2O medium over the temperature interval 20-80 degrees C indicates that there are two discrete thermal events: the first thermal event, centered at 42 degrees C, is associated with the hydrogen-deuterium exchange of the hard-to-exchange alpha-helical peptide bonds accompanied by a partial denaturation of the protein, while the second event, centered around 50 degrees C, represents the irreversible thermal denaturation of the protein.  相似文献   

20.
Little is known about the direction and specificity of protein adsorption to solid surfaces, a knowledge that is of great importance in many biotechnological applications. To resolve the direction in which a protein with known structure and surface potentials binds to negatively charged silica nanoparticles, fluorescent probes were attached to different areas on the surface of the protein human carbonic anhydrase II. By this approach it was clearly demonstrated that the adsorption of the native protein is specific to limited regions at the surface of the N-terminal domain of the protein. Furthermore, the adsorption direction is strongly pH-dependent. At pH 6.3, a histidine-rich area around position 10 is the dominating adsorption region. At higher pH values, when the histidines in this area are deprotonated, the protein is also adsorbed by a region close to position 37, which contains several lysines and arginines. Clearly the adsorption is directed by positively charged areas on the protein surface toward the negatively charged silica surface at conditions when specific binding occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号