首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of amino acids by normal rat hepatocytes and several hepatoma cell lines has been examined for inactivation by various protein-modifying reagents, including the sulfhydryl-preferring reagents N-ethylmaleimide (NEM) and p-chloromercuribenzene sulfonate (PCMBS). Uptake of 2-aminoisobutyric acid (AIB), a specific probe for hepatic System A-mediated transport, was equally sensitive to inhibition by the organic mercurial PCMBS in each of the cell types tested. In contrast, the sensitivity of System A to inactivation by NEM was substantially different among the five cell types. Normal hepatocytes showed the greatest sensitivity, while the hepatoma cells varied in their responsiveness from moderate to no inhibition. PCMBS inactivated greater than 85% of the System A activity in rat H4 hepatoma cells within 10 min (t1/2 = 3 min). The inhibition by PCMBS was rapidly reversed by treatment of the cells with dithiothreitol. Amino acids showing a high affinity for System A protected the transport system from inactivation, whereas non-substrates produced little or no protection. Amino acid-dependent protection was stereospecific and system-specific. L-norleucine competitively inhibited AIB uptake (Ki = 1.9 +/- 0.1 mM) in H4 cells and also protected System A from PCMBS-dependent inactivation (half-maximal protection occurred at an amino acid concentration of 0.6 +/- 0.1 mM). N-bromosuccinimide was completely ineffective as an inhibitor of System A activity in hepatocytes, whereas treatment of H4 rat hepatoma cells with this reagent resulted in greater than 95% inhibition.  相似文献   

2.
NADH oxidase activity of plasma membranes from rat hepatoma and HeLa cells responded to thiol reagents in a manner different from that of plasma membranes of liver. Specifically, the NADH oxidase activity of plasma membranes of HeLa cells was inhibited by submicromolar concentrations of the thiol reagentsp-chloromercuribenzoate (PCMB),N-ethylmaleimide (NEM), or 5,5-dithiobis-(2-nitrophenylbenzoic acid) (DTNB), whereas that of the rat liver plasma membranes was unaffected or stimulated over a wide range of concentrations extending into the millimolar range. With some hepatoma preparations, the NADH oxidase activity of hepatoma plasma membranes was stimulated rather than inhibited by PCMB, whereas with all preparations of hepatoma plasma membranes, NEM and DTNB stimulated the activity. In contrast, NADH oxidase activity of rat liver plasma membrane was largely unaffected over the same range of PCMB concentrations that either stimulated or inhibited with rat hepatoma or HeLa cell plasma membranes. Dithiothreitol and glutathione stimulated NADH oxidase activity of plasma membranes of rat liver and hepatoma but inhibited that of HeLa plasma membranes. The findings demonstrate a difference between the NADH oxidase activity of normal rat liver plasma membranes of rat hepatoma and HeLa cell plasma membranes in addition to the differential response to growth factors and hormones reported previously (Brunoet al., 1992). Results are consistent with a structural modification of a NADH oxidase activity involving thiol groups present in plasma membranes of rat hepatoma and HeLa cells but absent or inaccessible with plasma membranes of rat liver.  相似文献   

3.
Using rat heart sarcolemma and liver plasma membrane vesicles, it has been verified that the transport of leukotriene C4 (LTC4) across membranes is an ATP-dependent process; the apparent Km for LTC4 was 150 nM (heart sarcolemma) or 250 nM (liver plasma membrane). S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited LTC4 uptake into the vesicles dose-dependently (I50 = 25 microM for both heart sarcolemma and liver plasma membrane vesicles). Mutual inhibition between LTC4 and DNP-SG in uptake into the vesicles demonstrates that transport of LTC4 is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

4.
We have investigated the biogenesis and processing of the rat hepatic System A amino acid carrier following induction of its de novo synthesis by the combined action of glucagon and dexamethasone. Golgi subfractions isolated from hormone-treated rat liver form transport competent vesicles and possess characteristic System A activity based on pH sensitivity and 2-(methylamino)isobutyric acid inhibition of Na(+)-dependent 2-aminoisobutyric acid uptake. We have monitored the time course for appearance of the newly synthesized carrier in the Golgi and plasma membrane fractions after the administration of hormones. Our data suggest that it may also be possible to detect processing intermediates of the System A carrier in the Golgi. Perfusion of whole rat liver with 5 mM N-ethylmaleimide followed by isolation of Golgi subfractions and plasma membrane revealed a differential sensitivity such that the plasma membrane or trans Golgi activities were inactivated to a much greater extent than those of the cis or medial Golgi. In vitro N-ethylmaleimide treatment of membrane fractions isolated from an intact rat results in an inactivation of the trans Golgi and plasma membrane System A carrier protein, whereas the cis and medial Golgi fractions retained their transport activity.  相似文献   

5.
The plasma membrane hexose transporter and the tonoplast hexose transporter from heterotrophically grown transformed Nicotiana tabacum cells have been studied in vitro using membrane vesicles for trans-zero transport studies. In highly purified phase-partitioned outside-out plasma membrane vesicles (PMV) the hexose transporter showed an apparent Km value of 230 microM (substrate: 3-O-methyl-D-glucose (3-OMG); pHi 7.2/pHo 7.2), which was reduced to 120 microM when a pH gradient was imposed (pHo 5.7/pHi 7.2). However, the Vmax value was not affected indicating that no stable pH gradient was formed. Uptake experiments with 14C-labelled acetate supported this interpretation. Transport was insensitive to N-ethylmaleimide (NEM; up to 1 mM concentration) and p-chloromercuribenzene sulfonate (PCMBS; up to 500 microM), whereas the tonoplast hexose transporter (in mixed inside / out and outside / out vesicles) was inhibited by NEM in a substrate-protectable manner, and PCMBS was also inhibitory. Kinetically two components with apparent Km values of 6 and 20 mM could be distinguished for the tonoplast hexose transporter. Substrate specificities of both transporters were similar except for D-galactose and D-fructose. The results indicate structural differences between the tonoplast and plasma membrane hexose transporters in plants.  相似文献   

6.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   

7.
The Na+-dependent uptake of alanine into plasma membrane vesicles from rat liver was inhibited by N-ethylmaleimide (NEM) and by mersalyl. NEM did not inhibit alanine-independent Na+ uptake and the inhibition of alanine transport by NEM was protected by pre-incubation with an excess of substrate. It was therefore concluded that NEM acted by binding to the alanine carrier. A protein of Mr 20 000 was found to bind NEM with a concentration dependence parallel to the NEM inhibition of alanine transport. The inhibition of binding of [3H]NEM to this protein by mersalyl had a concentration dependence similar to that of the inhibition of transport by mersalyl. Preincubation with L-alanine, but not with D-alanine, led to protection of the Mr 20 000 protein from binding NEM. It is concluded that this protein is an essential component of the alanine transport system.  相似文献   

8.
The disulfide reducing agent, dithiothreitol (DTT) and the sulfhydryl-modifying reagents p-chloromercuribenzenesulfonic acid and N-ethylmaleimide (NEM) were employed to assess the role of disulfide and sulfhydryl groups in organic cation transport. The transport of N1-[3H]methylnicotinamide (NMN), a prototypic organic cation, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. DTT inhibited NMN transport reversibly with an IC50 of 250 microM/mg of protein. 5 mM NMN protected against DTT inactivation. The specificity of substrate protection was demonstrated by showing that D-glucose had no effect on the DTT inactivation of NMN transport and conversely that NMN had no effect on the DTT inactivation of D-glucose transport. Disulfide bonds reduced by DTT could be reoxidized by washing with excess buffer or by addition of 0.02% H2O2 thereby restoring NMN transport. p-Chloromercuribenzenesulfonic acid reversibly inactivated NMN transport with an IC50 of 25 microM/mg of protein. 5mM NMN protected against inactivation. NEM irreversibly inactivated transport with an IC50 of 250 microM/mg of protein. The rate of NMN inactivation by NEM followed pseudo-first order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 1.3. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of NEM inactivates 1 sulfhydryl group/active transport unit. The presence of 5 mM NMN affected the rate of NEM (2.5 mM) inactivation: the t1/2 values for inactivation in the presence and absence of substrate were 7.3 and 2.0 min, respectively. The results demonstrate an essential requirement for disulfide and sulfhydryl groups.  相似文献   

9.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

10.
A membrane-rich preparation was isolated from adult rat skeletal muscle in low salt media and further fractionated in sucrose gradients. Fraction F2, with a relative density of 1.092-1.119, consisted of sealed membrane vesicles which were enriched in plasma membrane markers. These vesicles were capable of stereospecific D-glucose uptake which was sensitive to cytochalasin B (CB). The membranes were also enriched in high affinity [3H]CB binding activity (Kd of 0.28 microM). [3H]CB binding to the glucose carrier of these plasma membranes, estimated as the fraction of binding protectable by D-glucose, ranged between 2.5 and 7.4 pmol/mg protein in several membrane preparations. The amount of [3H]CB binding to muscle membranes from newborn and adult rats was not markedly different. Trypsin, at low concentrations, altered the molecular weight of several membrane components, without affecting [3H]CB binding. Higher concentrations of trypsin abolished [3H]CB binding. Both 2,4-dinitrofluorobenzene (0.1 mM) and N-ethylmaleimide (15 mM) inhibited [3H]CB binding; inhibition by these reagents was prevented by inclusion of micromolar concentrations of CB in the reaction mixture. Several procedures that extracted specific proteins enriched the D-glucose-sensitive [3H]CB binding to the protein-depleted membranes. Antibody raised against the glucose carrier of human red cell membranes cross-reacted with a polypeptide of Mr about 45K of muscle membranes which might represent the glucose carrier.  相似文献   

11.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   

12.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

13.
Simon et al. (J. Clin. Invest., 70 (1982) 401) studied cholate binding to crude liver plasma membrane vesicles and suggested that the binding may represent mainly the binding to the receptor (carrier) on the canalicular membrane. This hypothesis was supported by finding a good correlation between the number of cholate binding sites on liver plasma membrane and the maximal rate of biliary secretion (Tm) for taurocholate. We studied bile acid binding to sinusoidal and canalicular membrane vesicles isolated from rat liver by a rapid filtration technique. Scatchard analysis of the saturation kinetics showed both [3H]cholate and [3H]chenodeoxycholate bind to two classes of binding site on each membrane. However, little difference was observed between the binding to sinusoidal and canalicular membrane vesicles for each bile acid (cholate, Kd1 = 10.4 and 19.8 microM, n1 = 31.0 23.6 pmol/mg protein, Kd2 = 1.32 and 1.73 mM, n2 = 13.1 and 23.4 nmol/mg protein; and chenodeoxycholate, Kd1 = 0.207 and 0.328 microM, n1 = 36.7 and 27.4 pmol/mg protein, Kd2 = 1.16 and 2.26 mM, and n2 = 20.6 and 24.2 nmol/mg protein; numbers show the mean values sinusoidal and canalicular membrane vesicles, respectively). Chenodeoxycholate binding to sinusoidal membrane vesicles was markedly inhibited by cholate but not by Rose bengal, an organic anion dye. These studies indicate that both membranes (sinusoidal and canalicular membrane vesicles) have two kinds of binding site for bile acids, although no clear difference in the binding properties was observed between the two membranes. Consequently, the cholate binding Simon detected may represent the binding not only to canalicular membrane vesicles but also to sinusoidal membrane vesicles.  相似文献   

14.
The effect of N-ethylmaleimide (NEM), an irreversible sulfhydryl modifying reagent, on the transport of organic cations in the renal basolateral membrane was examined. The studies were conducted examining the exchange of [3H]tetraethylammonium (TEA) for unlabeled TEA in basolateral membrane vesicles isolated from the outer cortex of rabbit kidneys. NEM inactivated TEA transport in a dose-dependent fashion with an IC50 value of 260 microM. The rate of TEA transport inactivation followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 4.0. The data imply that inactivation involves the binding of at least four molecules of NEM per active transport unit. This is most consistent with the presence of four sulfhydryl groups at this site. The substrate TEA displayed a dose-dependent enhancement of NEM inactivation, with 50% enhancement occurring at 365 microM TEA. Another organic cation, N1-methylnicotinamide, known to share a common transport mechanism with the TEA/TEA exchanger is also capable of increasing the reactivity of sulfhydryl groups to NEM. These results demonstrate that there are essential sulfhydryl groups for organic cation transport in the basolateral membrane. In addition, the capability of organic cations to alter the susceptibility to sulfhydryl modification suggests that these groups may have a dynamic role in the transport process.  相似文献   

15.
Using rat liver canalicular plasma membrane vesicles, it has been verified that the transport of p-nitrophenyl glucuronide (NPG) across membranes is an ATP-dependent process; the apparent Km for NPG was 20 microM. S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited NPG uptake dose-dependently, and NPG or testosterone glucuronide did ATP-dependent DNP-SG uptake similarly. These results suggest that transport of glucuronide is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

16.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

17.
The effect of several sulfhydryl-modifying reagents (HgCl2, p-chloromercuribenzenesulfonic acid (PCMBS), N-ethylmaleimide) on the renal organic anion exchanger was studied. The transport of p-amino[3H]hippurate, a prototypic organic anion, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. HgCl2, PCMBS and N-ethylmaleimide inactivated p-aminohippurate transport with IC50 values of 38, 78 and 190 microM. The rate of p-aminohippurate inactivation by N-ethylmaleimide followed apparent pseudo-first-order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the N-ethylmaleimide concentration with a slope of 0.8. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of N-ethylmaleimide inactivates one essential sulfhydryl group per active transport unit. Substrate (1 mM p-aminohippurate) affected the rate of the N-ethylmaleimide (1.3 mM) inactivation: the t1/2 values for inactivation in the presence and absence of p-aminohippurate were 7.4 and 3.7 min, respectively. The results demonstrate that there are essential sulfhydryl groups for organic anion transport in the brush-border membrane. Moreover, the ability of substrate to alter sulfhydryl reactivity suggests that the latter may play a dynamic role in the transport process.  相似文献   

18.
System A-mediated amino acid transport activity from rat liver plasma membrane vesicles has been solubilized and reconstituted into proteoliposomes using a freeze-thaw-dilution technique. The presence of cholate, at a cholate to protein ratio of 1:1, during the freeze-thaw step resulted in an enhancement in recoverable transport activity. The carrier required both phosphatidylcholine and phosphatidylethanolamine for optimal activity, but the addition of cholesterol to the reconstitution procedure appeared to have no significant effect on the resulting activity. A lipid to protein ratio of 20:1 yielded maximal transport activity. Sonication of the proteoliposomes provided some improvement in the accuracy of replicate assays for a given proteoliposome preparation. Isolated liver plasma membrane vesicles prepared from rats treated in vivo with glucagon in combination with dexamethasone contained stimulated System A activity. This enhanced transport activity could be solubilized and recovered in proteoliposomes generated from these plasma membranes. The data support the proposal that hormone regulation of the hepatic System A gene results in the de novo synthesis and plasma membrane insertion of the carrier protein itself.  相似文献   

19.
The transport activity of the purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria was correlated to modification of its sulfhydryl groups by various reagents. Both the ornithine/ornithine (antiport) and the ornithine/H(+) (unidirectional) transport modes catalysed by the ornithine/citrulline carrier were inhibited by methanethiosulfonates, mercurial reagents, N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoate) (DTNB). The treatment of the ornithine/citrulline carrier with mercurial reagents, at concentrations above 5 microM, caused the induction of an additional (pore-like) transport mode, characterized by loss of substrate specificity and a transport activity higher than that of the unmodified carrier. The S-S forming reagent Cu(2+)-phenanthroline inhibited the transport catalysed by the carrier, indicating the presence of close sulfhydryl groups. The effect of consecutive addition of the various reagents revealed a peculiar aspect of the ornithine/citrulline carrier, i.e. the presence of three distinct populations of sulfhydryl groups. The first was responsible for the inhibition of the physiological transport modes by methanethiosulfonates, NEM and DTNB and low concentrations (<5 microM) of mercurials; the second population was responsible for the transition to the pore-like activity induced by higher concentrations (>5 microM) of mercurials; the third population was involved in S-S bridge formation.  相似文献   

20.
The lactose carrier, a galactoside:H+ symporter in Escherichia coli, has been purified from cytoplasmic membranes by pre-extraction of the membranes with 5-sulfosalicylate, solubilization in dodecyl-O-beta-D-maltoside, Ecteola-column chromatography, and removal of residual impurities by anti-impurity antibodies. Subsequently, the purified carrier was reincorporated into E. coli phospholipid vesicles. Purification was monitored by tracer N-[3H]ethylmaleimide-labeled carrier and by binding of the substrate p-nitrophenyl-alpha-D-galactopyranoside. All purified carrier molecules were active in substrate binding and the purified protein was at least 95% pure by several criteria. Substrate binding to the purified carrier in detergent micelles and in reconstituted proteoliposomes yielded a stoichiometry close to one molecule substrate bound per polypeptide chain. Large unilamellar proteoliposomes (1-5-micron diameter) were prepared from initially small reconstituted vesicles by freeze-thaw cycles and low-speed centrifugation. These proteoliposomes catalyzed facilitated diffusion and active transport in response to artificially imposed electrochemical proton gradients (delta mu H+) or one of its components (delta psi or delta pH). Comparison of the steady-state level of galactoside accumulation and the nominal value of the driving gradients yielded cotransport stoichiometries up to 0.7 proton/galactoside, suggesting that the carrier protein is the only component required for active galactoside transport. The half-saturation constants for active uptake of lactose (KT = 200 microM) or beta-D-galactosyl-1-thio-beta-D-galactoside (KT = 50-80 microM) by the purified carrier were found to be similar to be similar to those measured in cells or cytoplasmic membrane vesicles. The maximum rate for active transport expressed as a turnover number was similar in proteoliposomes and cytoplasmic membrane vesicles (kcat = 3-4 s-1 for lactose) but considerably smaller than in cells (kcat = 40-60 s-1). Possible reasons for this discrepancy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号