首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SYNOPSIS. Ethionine or methionine can serve as sole nitrogen source for growth of Prymnesium parvum. Both amino acids are taken up as such at a ratio of 2 : 1 methionine/ethionine. Ethionine is totally de-ethylated in the cell, while methionine is probably only partially de-methylated. The homocysteine moiety of both amino acids is similarly metabolised to form cysteine or re-methylated to form methionine. De-ethylation of ethionine seems how P. parvum avoids its antimetabolic effect  相似文献   

2.
It was found that ethionine partially inhibits the transport of the inducer (TMG) of β-galactosidase into the cells ofEscherichia coli ML-30. The synthesis of β-galactosidase-specific messenger RNA is not inhibited. Ethionine appears to be incorporated into proteins synthesized by the strains used. The incorporation of ethionine into the molecule of β-galactosidase results in the synthesis of an enzymically inactive, immunologically cross-reacting protein.  相似文献   

3.
Two unknown radioactive areas appeared after radioautography and two dimensional paper chromatography of culture medium in which Escherichia coli was grown. These materials were studied by paper chromatography and paper electrophoresis of several derivatives and identified as ethionine and ethionine sulfone, the latter an artifact. Chromatographic coincidence of the unknowns and their derivatives with authentic materials establishes the identification. Ethionine was found in cellular extracts and in the growth media of Escherichia coli, Bacillus megaterium, Pseudomonas aeruginosa, and Aerobacter aerogenes but not in Scenedesmus, Saccharomyces cerevisiae, or bovine lymphosarcoma cells. Ethionine was synthesized by resting E. coli cultures from radioactive sulfate and from radioactive methionine. Growing cells labeled ethionine within 1 minute after addition of radioactive sulfate to cultures. Levels of radioactivity in ethionine increased with time. No incorporation of this amino acid could be detected in the cellular proteins formed under the conditions of this study.  相似文献   

4.
The effect of ethionine, an amino acid analog of methionine, has been studied in Saccharomyces cerevisiae in relation to cell growth, oxygen consumption, in vitro protein synthesis of mitochondrial translation products (MTPs) and the degradation of those mitoribosomally made proteins by an ATP-dependent process present within the organelle. Ethionine was found to increase the generation time of those cells already committed to cell division and to abolish the initiation of new cell cycles. Oxygen consumption of cultures grown in the presence of the analog was drastically reduced. Ethionine was also found to impair the incorporation of methionine and leucine into mitochondrial translation products, however the synthesis of proteins was not totally blocked and, apparently, mitochondria utilized ethionine as a precursor amino acid. MTPs synthesized by isolated mitochondria in the presence of ethionine were rapidly degraded inside the organelle at a faster rate compared with the normal proteins synthesized under identical conditions in the mitochondria. It is also shown that these in vitro synthesized proteins are degraded by an ATP-stimulated proteolytic system, as has been previously established.  相似文献   

5.
SYNOPSIS. On prolonged incubation of ethionine-sensitive (ES) cells of Ochromonas danica in L-ethionine-containing media, growth was resumed by an ethionine-resistant (ER) mutant. Such mutants arise at random and are selected by the ethionine-containing medium. Ethionine resistance is not lost on repeated transfers thru ethionine-less media. ES cells incubated with ethionine form a large posterior vacuole before they disintegrate. Inhibition of reserve substance utilization is suggested to underlie growth inhibition of O. danica by ethionine. In ES cells incubated with ethionine, 14C uptake from labeled methionine, ethionine or serine is reduced by 65%. In ER cells the decrease in 14C uptake is 90%. This decrease in uptake of ethionine seems to be how ER O. danica evades growth inhibition by ethionine.  相似文献   

6.
Ethionine is the toxic S-ethyl analog of the essential amino acid methionine. Whereas in prokaryotes the ethionine just competes with the methionine, in eukaryotes it can also be transformed into S-adenosyl-ethionine (Ado-Eth), competing with the S-adenosyl-methionine (Ado-Met). When the Ado-Met synthetase activity was studied in strains defective in either of the two isoenzymes, the one coded by theSAM1 gene was totally unable to convert ethionine into Ado-Eth and was inhibited by the analog, whereas the enzyme coded by theSAM2 gene was able to bind ethionine and was not inhibited by it. This has allowed the development of a procedure to measure Ado-Met synthetase and differentiate between the two isoenzymes present inSaccharomyces cerevisiae.  相似文献   

7.
In a defined medium with added ethionine plus low methionine, phenylalanine, tryptophan, tyrosine, adenine, and additional methionine reversed inhibition of the enteric yeast Candida slooffii by ethionine. Isoleucine and 7-methylguanine restored half-maximal growth. Choline but not triethylcholine inhibited C. slooffii. 6-Mercaptopurine reversed ethionine inhibition and also synergistic inhibition by ethionine plus choline. Protection against ethionine by adenine plus aromatics was also evident with log-phase cells in the absence of methionine. Incorporation of ethionine-ethyl-1-(14)C by resting cells was partially inhibited by aromatic amino acids and methionine. Ethionine depressed incorporation of (3)H-phenylalanine but not of (3)H-adenine. Ethionine-resistant mutants were isolated which incorporated ethionine efficiently and degraded it to yet unidentified substances not including 5'-ethylthioadenosine. Ethionine-sensitive cells accumulated more S-adenosylethionine (SAE) than resistant mutants. Adenine was a good precursor of SAE. Radioactivity from ethionine-ethyl-1-(14)C was recovered from cell fractions of ethionine-sensitive cells with the following distribution: cold trichloroacetic acid-soluble > hot trichloroacetic acid-insoluble > lipids > deoxyribonucleic acid > ribonucleic acid. Total radioactivity recovered from ethionine-sensitive cells was twice as much as that from ethionine-resistant mutants.  相似文献   

8.
Mutants of Chlorella vulgaris induced by N-methyl-N′-nitro-N-nitrosoguanidine (NG), and, selected for the resistance to either ethionine or 6-methylpurine, were tested for the relative rate of incorporation into protein of 3H-methionine and 14C-leucine. A highly significant, correlation between the 3H-to-14C ratio in the protein and its methionine content was found. 6-Methylpurine proved to be more effective than ethionine as a screening agent for high methionine strains. Screening for 6-methylpurine resistance, followed by a second screening for the highest methionine-to-leucine incorporation ratio, led to isolation of the mutants with a content up to 45% higher in methionine and up to 3 times higher in cysteine with respect to the wild strain.  相似文献   

9.
Aminoacyl-tRNA synthetase and tRNA were isolated from the chrysomonad Ochromonas danica. The mutual effect of methionine and ethionine, and the effect of other amino acids on methionyl- and ethionyl-tRNA formation, were tested in an in vitro system. The tRNAMet had a similar accepting capacity for either methionine or ethionine. Ethionine and methionine, but none of the other amino acids tested, competed for the same aminoacyl-tRNA synthetase. The Km of methionine was 0.88 × 10–5 M, and that of ethionine 5 × 10–4 M. Ethionine inhibited methionine binding; Ki 3.4 × 10–4 M. The respective values in a similar system isolated from E. coli were 2.2 × 10–5, 1.95 × 10–3, and 1.95 × 10–3.  相似文献   

10.
Ethionine at concentrations of 10−3M, 5×10−3M and 10−2M inhibits growth, both of β-galactosidase inducible ML-30 and constitutive ML-308Escherichia coli strains. The protein synthesis (measured by the incorporation of l-leucine-14C and l-aspartic-14C acid into proteins) of these strains is inhibited to the same extent as their growth. The synthesis of inducible and constitutive β-galactosidase produced by the strains ML-30 and ML-308, respectively, is considerably inhibited by ethionine.  相似文献   

11.
The effect of a range of inhibitors on kinetin-induced increasein fresh weight (expansion) and in RNA content of isolated cotyledonsof fenugreek (Trigonella foenum-graecum L.) has been measuredover incubation periods of up to 48 h in darkness. Some compounds inhibited both expansion and net RNA increase:2, 4-dinitrophenol, cycloheximide, L-azetidine-2-carboxylicacid, 6-methylpurine, thiouracil, and actinomycin D. Other compoundsinhibited net RNA increase but not expansion: 5-fluorouracil,2, 6-diamino-purine, 5-azacytidine, and L-ethionine. Ethionine stimulated the induction of nitrate reductase. Effectsby ethionine on RNA content were reversed by methionine, butnot by adenosine. Inhibitory interactions between ethionineand guanosine, hypoxanthine and especially some 6-substitutedadenines were observed. Ethionine, apart from inhibiting uptakeof labelled uridine, also inhibited its incorporation into rRNAbut not that into tRNA. Results confirm that kinetin-induced expansion in cotyledonsis dependent on mRNA synthesis and suggest that the inhibitoryeffect of ethionine on kinetin-induced RNA increase is not dueto ATP trapping or inhibition of protein synthesis or reducedmethylation of tRNA, but to interference with the metabolismof rRNA.  相似文献   

12.
Ethionine supplementation of a defined medium for growth of Pseudomonas denitrificans inhibited vitamin B(12) overproduction and led to the elaboration of a red pigment. The pigment was shown to be coproporphyrin III. Inhibition by ethionine of cobalamin synthesis is probably due to interference of methylation of the corrin nucleus by methionine. Accumulation of coproporphyrin III is thought to result from interference by ethionine with the activity of methionine in the coproporphyrinogenase reaction; this would inhibit formation of heme, the feedback inhibitor and corepressor of delta-aminolevulinate synthetase, thus allowing unregulated synthesis of coproporphyrinogen III and its degradation product, coproporphyrin III. Betaine, known to be required for vitamin B12 overproduction, was found to be an essential requirement for porphyrin overproduction in the presence of ethionine. Low-level production of porphyrin, which occurs in the absence of ethionine, also required betaine supplementation. Betaine is thus required for overproduction of both corrins and porphyrins in P. denitrificans.  相似文献   

13.
The path of unspecific incorporation of selenium in Escherichia coli   总被引:2,自引:0,他引:2  
The path of unspecific selenium incorporation into proteins was studied in Escherichia coli mutants blocked in the biosynthesis of cysteine and methionine or altered in its regulation. Selenium incorporation required all enzymatic steps of cysteine biosynthesis except sulfite reduction, indicating that intracellular reduction of selenite occurs nonenzymatically. Cysteine (but not methionine) supplementation prevented unspecific incorporation of selenium by repressing cysteine biosynthesis. On the other hand, when the biosynthesis of cysteine was derepressed in regulatory mutants, selenium was incorporated to high levels. These findings and the fact that methionine auxotrophic strains still displayed unspecific incorporation show that selenium incorporation into proteins in E. coli occurs mainly as selenocysteine. These findings also provide information on the labeling conditions for incorporating 75Se only and specifically into selenoproteins. Received: 2 May 1997 / Accepted: 23 June 1997  相似文献   

14.
用乙硫氨酸为筛选剂,通过幼苗和组织培养筛选得到乙硫氨酸抗性愈伤组织。该愈伤组织在含乙硫氨酸的培养基上表现出较高的半抑制剂量和相对生长量。作为天门冬氨酸途径的产物,甲硫氨酸、异亮氨酸和赖氨酸在所筛选的愈伤组织中分别增加到对照的两倍多,但苏氨酸保持正常水平,另外酪氨酸、半胱氨酸和亮氨酸也有所增加,而在所筛选的愈伤组织中缬氨酸浓度却下降。说明在所筛选愈伤组织中存在一个以上与氨基酸合成相关的酶发生改变。同工酶分析表明,该愈伤组织中出现对照中没有的分子量为44kD的超氧化物歧化酶和分子量为45kD的酯酶谱带。  相似文献   

15.
Ethionine, a hepatocarcinogen, was administered into rats 24 h before partial hepatectomy and immediately thereafter. Hepatic precursor ribosomal RNA (pre-rRNA) obtained 20 h after the operation of rats injected with ethionine and adenine resulted in methyl deficiency as judged by the incorporation of [3H]methyl group of S-adenosylmethionine into nuclear rRNA by partially purified rRNA methylase. The ethionine and adenine treatment causes methyl deficiency of nuclear rRNA at 2'-hydroxyribose sites of cytidine and uridine, but not at base sites. Although the ethionine and adenine treatment produced no significant change in total hepatic RNA synthesis in vivo assayed by the incorporation of labeled orotate, a one-third increase in nuclear rRNA synthesis as well as a one-third decrease in microsomal rRNA synthesis was found under the treatment. These results suggest that the undermethylation at 2'-hydroxyribose of pre-rRNA in liver nucleus, which is caused by ethionine and adenine administration into rats, causes an inhibition of the processing of nuclear pre-rRNA to cytoplasmic rRNA.  相似文献   

16.
Summary Diploid alfalfa (HG2), capable of plant regeneration from tissue culture, was used to select variant cell lines resistant to growth inhibition due to ethionine (an analog of methionine). Approximately 107 suspension-cultured cells were mutagenized with methane sulfonic acid ethylester and then plated in solid media containing ethionine. Callus colonies formed on media with 0.02 mM ethionine. Of the 124 cell lines recovered, 91 regenerated plants. After six months growth on media without ethionine, 15 of 110 cell lines of callus grew significantly better than HG2 on 1 mM ethionine. Several ethionine-resistant callus cultures were also resistant to growth inhibition due to the addition of lysine + threonine to the media. High concentrations, relative to unselected HG2 callus, of methionine, cysteine, cystathionine, and glutathione were found in some, but not all, ethionine-resistant callus cultures. Cell line R32, which had a ca. tenfold increase in soluble methionine, had a 43% increase in total free amino acids and a 40% increase in amino acids in protein as compared to unselected HG2 callus. Relative amounts of each amino acid in protein were the same in both.Abbreviation LT lysine + threonine in equimolar concentration  相似文献   

17.
Compared with the parental strain, a Spirulina platensis mutant that is resistant to ethionine incorporated methionine into protein at a reduced rate, whereas ethionine incorporation was practically nil. The methionyl-tRNA synthetase present in crude extracts from the resistant strain showed a reduced affinity for methionine and ethionine.  相似文献   

18.
The effect of three methionine analogues, ethionine, selenomethionine, and trifluoromethionine, on the biosynthesis of methionine in Saccharomyces cerevisiae has been investigated. We have found the following to be true. (i) A sharp decrease in the endogenous methionine concentration occurs after the addition of any one of these analogues to growing cells. (ii) All of them can be transferred to methionine transfer ribonucleic acid in vitro as well as in vivo with, as a consequence, their incorporation into proteins. In the absence of radioactive trifluoromethionine, this conclusion results from experiments of an indirect nature and must be taken as an indication rather than a direct demonstration. (iii) Ethionine and selenomethionine can be activated as homologues of S-adenosylmethionine, whereas trifluoromethionine cannot. (iv) All of them can act as repressors of the methionine biosynthetic pathway. This has been shown by measuring the de novo rate of synthesis of methionine in a culture grown in the presence of any one of the three analogues.  相似文献   

19.
Abstract— An amino acid incorporating system from rat brain has been used to study in vitro four aspects of protein synthesis: amino acid-AMP-enzyme complex formation; amino acid-tRNA synthesis; amino acid incorporation into protein and protein synthesis from presynthesized amino acid-tRNA. Ethionine (0.5 mm ) inhibited the system and the inhibition appeared to be in the formation of amino acid-tRNA. The inhibition in vitro was independent of the sex of the animal from which the system was derived. Pretreatment of animals in vivo with ethionine yielded in females only preparations deficient in incorporating capacity when tested in vitro. Exchange experiments demonstrated that the defect was in the pH 5 enzymes and not in the ribosomes. The inhibition in vitro was not reversed by addition of ATP and appeared to be competitive with the amino acid substrate.  相似文献   

20.
Mutants of Chlorella sorokiniana selected for resistance to the methionine analogue ethionine took up ethionine at the same rate as did the wild type strain. Cells of two ethionine-resistant mutants produced severalfold higher levels of free methionine and cysteine than did wild type cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号