首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Often a single indicator invertebrate taxon is used for assessing changing landscape patterns. However, we argue here against the exclusive selection of a single group. Covariation in diversity patterns of spiders, carabids, staphylinids and ants were compared in and between five highly naturally-fragmented Afromontane forest patches (size range: 3.5–25.2 ha) in South Africa. Significantly fewer individuals and species were captured in smaller forest patches (<6 ha) for most of the taxa, except Formicidae, where a higher number of species were captured in medium-sized patches (7–9 ha). When sampling effort was standardized, a higher diversity (rarefaction and Simpson's diversity index) was obtained in the smaller patches for Carabidae, Staphylinidae and Formicidae. The only significant positive correlation between taxa, in terms of numbers of species, was between Carabidae and Staphylinidae. The other taxa showed only weak positive correlations between species richness, or negative correlations. Multivariate techniques showed significant species turnover between patch assemblages for each taxon, and also showed that some taxa are more similar in assemblage-structure than others. An index of complementarity showed that species compositions of the selected taxa varied greatly between forest patches of different sizes. Our results support the multi-taxa approach, in conservation studies, even at the level of taxonomically-related groups sharing a common habitat stratum.  相似文献   

2.
A comparative study of butterfly communities in 15 urban/suburban remnants of tropical semideciduous forest in Campinas (São Paulo state, SE Brazil; 24°S, 47°W), with areas from 1.0 to 252ha and widely varying histories and environments, shows that the most significant factors, besides area and sampling time, distinguishing the sites and influencing their diversity (80–702 species) and composition are connectivity, permanent water, vegetation, flowers, and human impact (negative, including pollution). The diversified Nymphalidae butterflies (38–213 species) and especially two fermented-bait-attracted groups (Satyrinae, 2–30 species, and Biblidini, 9–44 species), are among the more useful indicators of the quality and diversity of the environments in these fragments. Effective conservation of butterfly communities in tropical cities may be achieved by maintenance of arboreal green corridors along streets and watercourses between moderately large (>10ha) humid areas, not near to the most built-up or polluted city centre(s), and the inclusion within these areas of ponds or streams, diversified native forest, and open vegetation including abundant nectar-rich flowers.  相似文献   

3.
To discern mechanisms maintaining the diversity of grassland and forest butterflies in coppice woods managed for the production of Japanese forest mushroom logs, we investigated the butterfly fauna in cut-over land tracts shortly after felling and 5 year later, and in forest stands 10, 15, and 25 year after felling (here, we use the term “forests” when referring to the chronosequence of these treed stands). Butterfly species richness and diversity (H′) and the densities of individuals were highest in cut-over lands 5 year after clear-cutting, followed by 25-year-old forest stands. In forests, the richness and densities of forest butterfly species were higher than were those of grassland species. Among forest stands of different ages, forest butterfly species’ richness and the densities of individuals were highest in 25-year-old woods nearing felling time. Some forest butterfly species were observed only in forests. The species richness and densities of grassland butterflies were much higher in cut-over lands 0 and 5 year post felling than in forests; grassland species were rarely found in stands ≥10 year old. Thus, cut-over lands seem to function as temporary habitats for grassland species. Furthermore, the number of forest butterfly species was the same in cut-over lands 5 year after felling and in 25-year-old forest stands; the densities of forest butterfly species was higher in these cut-over lands than in the forest stands. Forest butterfly species living on cut-over land 5 year post felling sipped flower nectar, laid eggs on host plants, and practiced territorial behaviour involved in mate finding. Hence, these cut-over lands functioned as important habitats for various developmental stages of forest butterflies. In conclusion, traditional coppicing in woods for production of Japanese forest mushroom logs is very important for the maintenance of diversity in grassland and forest butterfly species.  相似文献   

4.
Organisms must possess good dispersal ability to persist in fragmented landscapes, as extinction in habitat patches is frequent and patches must be re-colonised to keep viable metapopulations. Thus, metapopulation maintenance is dependent on patch size and distance, although these affect species differently. In order to evaluate the ability of Nymphalid butterfly species to live in naturally fragmented small forest fragments we marked and released 3,415 butterflies in 16 of these areas separated in two networks at the Serra da Canastra National Park (PNSC), south-eastern Brazil. Subsequent recaptures in different forest fragments enabled us to assess the dispersal rates and distances for several Nymphalid species. Seventeen butterflies from 11 out of the 50 species captured were directly observed to disperse from 500 m to 870 m. Dispersal rates varied between 1 and 7% of the marked individuals and were directly correlated to the mean forewing length of each butterfly species population. The connectivity of the forest fragments through creeks appear to facilitate butterfly dispersal among fragments within micro-basins, as only one out of 50 dispersing individuals was observed to fly from one micro-basin to the other. Several species had viable populations in the small-fragment network. The distance between fragments is crucial as the coarser fragment network was unlikely to sustain viable populations of most of the species. The protection of large forest fragments located outside of the PNSC may be necessary to promote colonization of the smaller forest fragments inside the Park.  相似文献   

5.
Aim Most of the Atlantic Forest in Brazil occurs in fragments of various sizes. Previous studies indicate that forest fragmentation affects fruit‐feeding butterflies. Conservation strategies that seek to preserve organisms that are distributed in high‐fragmented biomes need to understand the spatial distribution of these organisms across the landscape. In view of the importance of understanding the fauna of these forest remnants, the objective of the present work is to investigate the extent to which the diversity of this group varies across spatial scales ranging from within‐forest patches to between landscapes. Location South America, south‐eastern Brazil, São Paulo State. Methods We used bait traps to sample fruit feeding butterflies at 50 points in 10 fragments in two different landscapes during a period of 12 months. Total species richness and Shannon index were partitioned additively in diversity at trap level, and beta diversity was calculated among traps, among forest patches, and between landscapes. We used permutation tests to compare these values to the expected ones under the null hypothesis that beta diversity is only a random sampling effect. Results There was significant beta diversity at the smallest scale examined; however, the significance at higher scales depends on the diversity measurement used. Beta diversity with Shannon index was smaller than expected by chance among fragments, whereas species richness was not. Among landscapes, only beta diversity in richness was higher than expected by chance. Main conclusions The results observed occur because there is great variability in species composition among forest patches in the same landscape, changing this diversity even though the communities are formed from the same pool of species. At the largest scale evaluated (between landscapes), these pattern changes and differences in beta diversity in richness were detectable. This difference is probably caused by the presence of rare species. Thus, a conservation strategy that seeks to preserve as many species as possible per unit of area in high‐fragmented biomes should give priority to protecting fragments in different landscapes, rather than more fragments in the same landscape.  相似文献   

6.
Protected forest areas of Sulawesi are gradually being replaced by intensively used agroforestry systems and farmland, especially in lowland and sub-montane regions. Studies on the impact of these man-induced changes on biodiversity are of urgent conservation concern. We compared the fruit-feeding butterfly assemblage of a natural hill forest to that of a disturbed hill forest, representing a mosaic of old secondary forest and recently abandoned or active subsistence farms. Overall, species richness seemed highest in the disturbed site, but both abundance and diversity of endemic butterflies were significantly higher in the natural forest. Although the butterfly assemblage showed a clear vertical structure in the natural forest, vertical stratification was no longer pronounced at the disturbed site. Comparative studies based on diversity estimates from ground samples should consider not only the scale at which sampling is carried out and influences from nearby habitat patches in the surrounding landscape mosaic, but also possible behavioural changes in stratified species after forest modification. This study shows that higher overall species richness does not imply higher species distinctiveness, and indicates that the contribution of land-use systems to global biodiversity should be evaluated with caution, even when relatively high species richness estimates are found.  相似文献   

7.
There is an increasing awareness that not only area and isolation, but also the characteristics of the landscape surrounding habitat patches influence population persistence and species diversity in fragmented landscapes. In this study, we examine the effects of grassland fragmentation and land use in the landscape matrix (on a 2 km scale) on species richness of plants, butterflies, bees and hoverflies. These organisms were studied in replicated remnant patches of different sizes and isolation, embedded in landscapes dominated either by forest, arable land or a mix of these. We found positive effects of patch area on species richness of the three insect taxa, but not of plants. Isolation had a negative effect only on hoverflies. Matrix type had contrasting effects on the studied taxa. Species richness of plants and butterflies was lowest in patches in landscapes dominated by arable land and highest in forest‐dominated landscapes. For hoverflies, the negative effect of small patch area was strongest in forest‐dominated landscapes, and there was a similar non‐significant trend for bees. Our study shows the importance of considering matrix characteristics when studying responses to habitat fragmentation. Differences in matrix response among organism groups probably impinge on differing mechanisms. A forest matrix is likely to provide additional resources for butterflies but either constitute a barrier to dispersal or deprive resources as compared to an arable matrix for hoverflies. Enhanced plant diversity in grassland patches embedded in forested landscapes can be explained by habitat generalists more easily invading these patches, or by an unpaid extinction debt in these landscapes.  相似文献   

8.
中国科学院西双版纳热带植物园(简称“版纳植物园”)保存着上万种植物,且生境多样,具有较高的蝴蝶多样性。本研究选择三类代表性生境:片段化雨林、次生林和专类园,聚焦于环境指示物种蝴蝶这一类群,通过样线法系统调查一年内蝴蝶多样性及其变化。观测结果显示:蝴蝶在版纳植物园内全年发生,共调查到其成虫5科126属218种6 015头,其中蛱蝶科多样性最高。蝴蝶种类及数量随月动态变化,生境间有差异,7-8月种类和数量达到最高峰;1月种类最少,而5-6月数量最低;每月均出现的种类仅有12种,绝大部分种类分散发生于不同月份。影响蝴蝶群落多样性的气候因子中,月最高温显著影响蝴蝶群落的物种丰富度和数量,月最低温显著影响物种丰富度、香农多样性和辛普森多样性,月平均温仅显著影响香农多样性。在版纳的三个典型季节中蝴蝶多样性存在差异,雨季物种丰富度最高,干热季香农和辛普森指数最高;雨季和雾凉季蝴蝶群落组成差异大,仅雾凉季与干热季的蝴蝶群落呈现中等程度相似。此外,在片段化雨林、次生林和专类园这3种不同生境中,蝴蝶群落组成也存在差异,蝴蝶物种丰富度和香农指数在次生林中最高,而辛普森指数则是片段化雨林最高;仅次生林与片段化雨林的蝴蝶群落呈现出中等程度相似。本研究揭示了版纳植物园蝴蝶群落的种类组成与月动态变化规律,并明确了不同季节和生境中蝴蝶群落的多样性变化,可为区域蝴蝶多样性观测及保护提供参考依据。  相似文献   

9.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

10.
Tropical butterfly conservation strategies often focus on total and/or common species richness to assess the conservation value of a patch or habitat. However, such a strategy overlooks the unique dynamics of rare species. We evaluated the species‐habitat relationships of 209 common, intermediate, and rare butterfly species (including morphospecies) across four habitat types (mature, degraded, or fragmented forest, and urban parks) and two patch sizes (<400 ha, ≥400 ha) in Singapore. Common species richness was consistent across habitat types. Intermediate species richness declined by more than 50 percent in urban parks (relative to all forest habitats), and rare species richness was reduced by 50 percent in degraded and fragmented forest and by 90 percent in urban parks (relative to mature forest). Large patches had comparable overall richness to small patches, but they supported more rare species and three times as many habitat‐restricted species over a similar area. Importantly, a number of rare species were confined to single small patches. Mixed‐effects regression models were constructed to identify habitat and ecological/life history variables associated with butterfly abundance. These models revealed that species with greater habitat specialization, rare larval host plants, few larval host plant genera, and narrow global geographic ranges were more likely to be rare species. Overall, these results demonstrate that the richness of habitat‐restricted and rare species do not follow the same spatial distribution patterns as common species. Therefore, while conserving mature forests is key, effective butterfly conservation in a transformed landscape should take into account rare and habitat‐restricted species.  相似文献   

11.
Gaigher  R.  Pryke  J. S.  Samways  M. J. 《Biodiversity and Conservation》2021,30(13):4089-4109

Habitat loss threatens insect diversity globally. However, complementary vegetation types in remaining habitat increases opportunities for species survival. We assess the extent to which indigenous forest patches moderate the impact of exotic commercial afforestation on grassland butterflies. Butterflies were sampled in grassland along uncorrelated gradients of landscape-scale indigenous forest and plantation cover, while controlling for variation in local vegetation composition. We separately assessed responses by butterfly groups differing in habitat preference, larval diet, and mobility. There was no effect of landscape- or local-scale variables on species richness, but there was a strong interactive effect of forest and plantation cover on butterfly assemblage structure. The effect varied according to species traits. When forest cover was high, assemblages did not differ at different levels of plantation cover. However, plantation cover significantly influenced assemblage structure when forest cover was low. Grassland with limited forest cover in the protected area supported unique assemblages with high frequency of less mobile, specialized species with herbaceous larval host plants, whereas grassland with low forest cover near plantations had a prevalence of mobile, generalist species. A positive association between forest cover and butterflies with woody larval host plants suggests that indigenous forest patches improved the suitability of fragmented grassland for a subset of butterflies, emphasising the value of natural heterogeneity in transformed areas. However, certain butterfly traits associated with large, open grassland were under-represented in grassland between plantations, underscoring the importance of open areas in the broader landscape to conserve the full diversity of species.

  相似文献   

12.
J. Rolstad  P. Wegge 《Oecologia》1987,72(3):389-394
Summary Distribution and size of 38 capercaillie Tetrao urogallus leks were related to amount and configuration of old forest patches in two south-east Norwegian coniferous forests. The smallest occupied patch was 48 ha containing a solitary displaying cock. All patches larger than 1 km2 contained leks. Number of cocks per lek increased with increasing patch size. Number of leks per patch increased in a step-wise manner with one lek added for each 2.5–3 km2 increase in patch size. In large patches there was one lek per 3–5 km2 old forest, and density of lekking cocks was 2–2.5 per km2. In small patches density of cocks varied considerably. Density of cocks was not related to patch isolation or patch shape. However, among leks surrounded by 50–60% old forest within a 1 km radius, number of cocks increased with increasing old forest fine-graininess. We argue that when old forests cover more than 50%, a fine-grained mosaic may support higher densities of lekking cocks than a coarse-grained mosaic. Conversely, when old forests cover less than 50%, a fine-grained mosaic is unfavourable, because each old forest patch becomes too small and isolated. Finally, we present a predictive model of how old forest fragmentation influences density of leks, number of cocks per lek, and total density of cocks.  相似文献   

13.
David B. Carey 《Oecologia》1994,99(3-4):337-342
Glaucopsyche lygdamus egg densities were surveyed over a 2000-m section of Gold Creek and at 30 different isolated patches in the Gold Basin drainage in Colorado. Host plant numbers and diversity were quantified, as well as other variables potentially influencing butterfly population size, such as patch size and isolation. Egg densities correlated significantly only with measures of host species diversity. Patches consisting of a single host species, no matter how large, did not support high butterfly densities, but patches of multiple, equitably distributed host species did. The most likely explantation, in light of oviposition preference and larval performance data accumulated for this butterfly species, is that host species diversity is necessary for the persistence ofG. lygdamus populations, because alternative host species buffer population losses during poor or unusual years. The dependence of both ovipositing butterflies and developing larvae on the ephemeral, young, host plant flowers make the butterfly especially vulnerable to year-to-year variation in host plant availability and quality.  相似文献   

14.
This study highlights spatial characterization of evergreen forests of the Western Ghats – an ecological hotspot in Tamil Nadu, India – using remote sensing and GIS-based analysis in conjunction with ground-based phytosociological data. The evergreen forests of Tamil Nadu are distributed in four distinct hill ranges, Nilgiri, Anamalai, Palni and Tirunelveli, having different topographic, bioclimatic and disturbance levels. The evergreen forests in these four hill ranges are characterized for their uniqueness in terms of patch characteristics and phytosociology. A vegetation type map was prepared using IRS LISS III satellite data and was used to study the patch characteristics in terms of patch size, number, shape, porosity and landcover diversity (LD). The phytosociological characteristics, namely species richness, diversity, similarity and community assemblages, were studied using ground data collected from 95 sample points of 0.1 ha size. Patch size and number revealed distinct intactness and disturbance levels in these four hill ranges. Evergreen forests in the Tirunelveli hills comprising 216.09 km2 are distributed in 306 patches, and in the Palni hills, with 285 km2, forests are distributed in 1029 patches, indicating a high level of fragmentation. LD, indicating the spatial heterogeneity of landcover, was very high in the Nilgiri hills and low in the Tirunelveli hills. The spatial analysis helped to delineate homogenous large patches of evergreen forest, which can be adopted for appropriate conservation strategies. A total of 342 tree species belonging to 4490 stems were evaluated for phytosociology. Only 15–28% of similarity in terms of species distribution was found across the hill ranges. Conjunctive analysis of patch characteristics and species distribution showed high species richness in less fragmented evergreen forests and vice versa. The study identified the areas of prioritization in terms of ecorestoration and conservation based on patch and phytosociological characteristics.  相似文献   

15.
Abandonment of farming with the resultant increase in forest cover is one of the major threats to semi-natural grasslands in marginal agricultural areas. In Sweden, the loss of semi-natural grassland is a serious nature conservation problem since it is one of the most species-rich habitats. In this study, the consequences of grassland abandonment and afforestation on butterfly diversity and butterfly dispersal costs are estimated and used to compare three different future land-use scenarios for a marginal agricultural landscape in Sweden. Based on previous butterfly surveys on grasslands in the area, a relationship between land-use type and butterfly diversity was established. By comparing land-use maps of different scenarios, the number of suitable habitat patches and total suitable habitat patch area with low, medium and high butterfly diversity could be estimated. To obtain an indication of possible fragmentation effects, a least-cost analysis was used to compare travel costs of the butterflies between suitable habitat patches for the different scenarios. The results show that different land-use scenarios affect butterfly diversity and travel costs differently. In the extreme case scenario of cessation of full-time farming and a reduction in part-time farming, nearly all valuable butterfly habitats will vanish, since the most species-rich habitats lie in the periphery of the settlement and are expected to be abandoned and afforested first. If, on the other hand, grassland management is less reduced the effect of abandonment on butterflies depends very much on which areas continue to be managed. To preserve the most important grasslands for butterflies an active management strategy for the whole study area would be needed. While it seems relatively easy to identify the areas most important to conserve from a butterfly diversity perspective, it will be more difficult to find an optimal spatial solution that also minimises dispersal costs for butterflies.  相似文献   

16.
Questions: 1. Do the species composition, richness and diversity of sapling communities vary significantly in differently sized patches? 2. Do forest patches of different sizes differ in woody plant colonization patterns? Location: São Francisco de Paula, Rio Grande do Sul, Brazil, 29°28'S,50°13'W. Methods: Three woody vegetation types, differing in structural development (patch size) and recovering for 10 years from cattle and burning disturbances, were sampled on grassland. We analysed the composition and complexity of the woody sapling communities, through relative abundance, richness and diversity patterns. We also evaluated recruitment status (residents vs. colonizers) of species in communities occurring in different forest patch size classes. Results : 1. There is a compositional gradient in sapling communities strongly associated with forest patch area. 2. Richness and diversity are positively correlated to patch area, but only in poorly structured patches; large patches present richness and diversity values similar to small patches. 3. Resident to colonizer abundance ratio increases from nurse plants to large patches. The species number proportion between residents and colonizers is similar in small and large patches and did not differ between these patch types. 4. Large patches presented a high number of exclusive species, while nurse plants and small patches did not. Conclusions: Woody plant communities in Araucaria forest patches are associated with patch structure development. Richness and diversity patterns are linked to patch colonization patterns. Generalist species colonize the understorey of nurse plants and small patches; resident species cannot recruit many new individuals. In large patches, sapling recruitment by resident adults precludes the immigration of new species into the patches, limiting richness and diversity.  相似文献   

17.
Nowadays 37% of Earth’s ice-free land is composed by fragments of natural habitats settled in anthropogenic biomes. Therefore, we have to improve our knowledge about distribution of organisms in remnants and to understand how the matrix affects these distributions. In this way, the present study aims to describe the structure of the butterfly assemblages and determined how richness and abundance are influenced by the scale of the surrounding vegetation. General linear models were used to investigate how the type and scale of vegetation cover within a radius of 100–2,000 m around the sampling point explained butterfly diversity. After sampling ten forest fragments we found 6,488 individuals of 73 species. For all clades tested null models explain the species richness at the fragments better than other models when we include the effect of butterfly abundance as a covariate. Abundance of Satyrini, Brassolini, and Biblidinae were best predicted by small scales (100–200 m), and large scales were more suited for Charaxinae. The presence of pasture best explains the abundance of all groups except Charaxinae, which was best explained by early-regrowth forest. The abundance of different species and groups are correlated with different kinds of vegetation cover. However, we demonstrate that small scales (100–200 m) are more effective at explaining the abundance of most butterflies. These results strongly suggest that efforts to preserve insect diversity in forest fragments should take in account the immediate surroundings of the fragment, and not only the regional landscape as a whole. In general, actions of people living near forest fragments are as important to fruit-feeding butterflies as large scale actions are, with the former being seldom specified in management plans or conservation policies.  相似文献   

18.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

19.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

20.
A survey was conducted on the species composition, richness and abundance of Papilionoidea (excluding Lycaenidae) butterfly fauna in habitats with various degrees of disturbance and altitudes in tropical forests at Tam Dao National Park, northern Vietnam in 2001. The transect method was used to collect data in the survey. Six transects representing different habitat types at two sites, one site located at a low elevation of 200–250 m a.s.l., and the other located at a high elevation of 950–1000 m a.s.l., were chosen: three transects for each site, with a length of 500 m for each transect. A total of 3594 individuals of 127 species in 240 sets of data were recorded from various habitats. The differences in butterfly composition, species richness, abundance and diversity in different habitat types and altitudes were analyzed. The results showed significant differences of butterfly diversity among the different habitat types and between the low and high altitude sites. The butterfly diversity, species richness and species abundance in the low elevation habitats were higher than in the high elevation habitats. The highest diversity of butterflies occurred in the mixed habitats of agriculture, scrub and clearing lands of high disturbance. However, butterflies most important for conservation are associated with undisturbed or moderately disturbed forests only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号