首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological relationships between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten have been studied by continuous culture studies using the chemostat technique. The maximum specific growth rate (μ max) and saturation constant (K s) were, respectively, 0.36 hr−1 and 0.047 mM for lactate-limited growth ofDesulfovibrio desulfuricans and 0,011 hr−1 and 0.17 mM for acetate-limited growth ofMethanobacterium sp. Calculated values for the true molar growth yieldsY G) and maintenance coefficients (m) were 30.6 g bacterial mass/mole of lactate and 0.53 g substrate/g dry wt hr forD. desulfuricans and 37.8 g bacterial mass/mole of acetate and 0.54 g substrate/g dry wt hr forMethanobacterium. No growth ofMethanobacterium was observed at apS2− value (the hydrogen sulfide potential) of more than 11 and there was no effect on the growth atpS2− values above 13. In mixed continuous culture experiments the concentration of acetate decreased in the secondstage growth vessel, whereas that of methane increased stoichiometrically. If the substrate concentration in the reservoirs (S r) was increased from 0.1 to 0.5 mg/ml, the population ofDesulfovibrio increased and that ofMethanobacterium was washed out of the culture vessel, since the concentration of hydrogen sulfide reached apS2− value of 10.5. From the mixed continuous culture experiments a commensalism between the two species can be described, i.e., the acetate-fermentingMethanobacterium benefits from the acetate released byDesulfovibrio which is, in turn, not affected in the presence of the former.  相似文献   

2.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

3.
The continuous culture of anaerobic bacteria   总被引:13,自引:0,他引:13  
  相似文献   

4.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

5.
6.
Summary A chemostat was employed for the enrichment and eventual isolation of a variety of heterotrophic bacteria from seawater. Experimental attempts to separate single species from mixed cultures of known composition showed that successful or unsuccessful competition for the limiting substrate is based upon the particular growth parameters of the individual species under the given culture conditions. The technique appears to be suitable to enrich reproducibly for bacterial species of little substrate specificity. Applications in ecological studies are discussed.Dedicated to Prof. C. B. Van Niel on the occasion of his 70th birthday.Contribution No. 1919 of the Woods Hole Oceanographic Institution. Supported by the National Science Foundation Research Grant No. GB-5199.  相似文献   

7.
8.
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h−1). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways.  相似文献   

9.
Oxygen defense in sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Sulfate-reducing bacteria (SRB) are strict anaerobes that are often found in biotopes where oxic conditions can temporarily exist. The bacteria have developed several defense strategies in order to survive exposure to oxygen. These strategies includes peculiar behaviors in the presence of oxygen, like aggregation or aerotaxis, and enzymatic systems dedicated to the reduction and the elimination of oxygen and its reactive species. Sulfate-reducing bacteria, and specially Desulfovibrio species, possess a variety of enzymes acting together to achieve an efficient defense against oxidative stress. The function and occurrence of these enzymatic systems are described.  相似文献   

10.
Abstract Four unidentified saccharolytic dissimilatory sulfate-reducing strains were isolated from an anaerobic digester. Cells were Gram-negative, motile, nonsporulating rods which differ markedly from known sulfate reducers especially with respect to carbon source utilisation and sulfur sources which can be reduced. The strains were capable of metabolising at least 26 out of 50 carbohydrates tested. Carbohydrates were, in the absence of exogenous sulfate, fermented to acetate, ethanol, lactate, carbon dioxide and hydrogen. In the presence of excess sulfate carbohydrates were fermented to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide, but lactate was not detected. An oxidized organic or inorganic sulfur source, including elemental sulfur, was not required as a prerequisite for growth on carbohydrates, Lactate was, in the presence of sulfate, converted to acetate, ethanol, carbon dioxide, hydrogen and hydrogen sulfide. In the absence of sulfate no lactate was utilised and no growth was observed.  相似文献   

11.
Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate–sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater.  相似文献   

12.
13.
Dimethylsulfoxide reduction by marine sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than with sulfate as electron acceptor. In extracts of cells of strain PA2805 grown on sulfate, a low level of DMSO-reducing activity was present (0.013 μmol (mg protein) min); higher levels were found in cells grown on DMSO (0.56 μmol (mg protein) min). In anoxic marine environments DMSO reduction by sulfate-reducing bacteria may lead to enhanced dimethylsulfide emission rates.  相似文献   

14.
Relationships between sulfate-reducing and methane-producing bacteria   总被引:1,自引:0,他引:1  
Summary Sulfate ions in the muddy sediments of Lake Vechten are consumed by sulfate-reducing bacteria of which the abundance is limited by the concentration of these ions. Methane producers are found deeper in the mud at lower concentrations of hydrogen sulphide. The turnover rate constant (k) of L-lactate, calculated from the decline in specific activity of labeled acid, was 2.37 h−1. The average L-lactate pool size was 12.2 μg per gram of wet mud, giving a turnover rate of 28.9 μg of lactate/gram of mud per h. The turnover rate constant of acetate was 0.35 h−1 and the average pool size 5.7 μg per gram of wet mud, giving a rate of disappearance of 2.0 μg of acetate/gram of mud per h. The formation of C14H4 from [U-C14]-L-lactate, suggests a substrate relationship between sulfate-reducing and methane-producing bacteria. Results of chemostat experiments gave further supporting evidence of such a relationship. The influence of an acetate-producing organism,Desulfovibrio desulfuricans, on the fermentation of limiting amounts of acetate by a methane-producing organism,Methanobacterium sp., was studied in mixed continuous cultures. The results of these experiments indicated the existence of a commensalism. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974.  相似文献   

15.
Classification of the spore-forming sulfate-reducing bacteria.   总被引:21,自引:4,他引:17  
  相似文献   

16.
Summary A chemostat was used as a model system to study competitive interactions of diazotrophic microorganisms. Enrichment experiments were carried out under microaerobic conditions (8.7 mol O2/l) with malate as the sole carbon source. The starting material was a Korean rice soil including intact root pieces. The enrichment process was governed by the dilution rate. High dilution rates resulted in the enrichment ofAzospirillum lipoferum, whereas low dilution rates led to the predominance of an unidentified organism, named Isolate R. Dilution rates were set in the range from D=0.005 to D=0.1 h–1. The growth kinetics of both organisms followed Monod's model in the enrichment culture. From the experiments, the maximum specific growth rate ofA. lipoferum and Isolate R were 0.069 h–1 and 0.025 h–1, respectively. The corresponding Ks-values were 8.4 and 0.9 (mg. 1–1). The point of theoretical coexistence of both organisms was calculated to occur at a substrate concentration of s=3.0 (mg.l–1) with a growth of rate =0.018 h–1. Hence the preset nutritional niches occupied by at least two organisms.Azospirillum lipoferum seems to represent the copiotroph microflora and Isolate R is of the oligotroph type. In addition to its high substrate affinity Isolate R liberatedca. 75% of the fixed nitrogen into the medium, which indicates its potential role for mutualistic interactions in the rhizosphere.  相似文献   

17.
Three starvation regimes (a deficient culture medium, a saline buffer solution and distilled water) were evaluated for their possible effect on cell surface characteristics of Azospirillum lipoferum 1842 related to the initial adsorption of the bacterium to surfaces. The bacteria survived for 7 days in all media although they did not multiply. Upon transfer from a rich growth medium (nutrient agar) to starvation conditions, cell surface hydrophobicity dropped sharply but recovered its initial value within 24 to 48 h, except in phosphate-buffered saline, the length of the recovery period depending on the starvation medium. Starvation affected the sugar affinity of the A. lipoferum cell surface mainly towards p-aminophenyl-alpha-D-mannopyranoside, to a lesser extent to glucose, but not to other monosaccharides tested. Starvation changed the concentration of several cell surface proteins but did not induce the synthesis of new ones. The cell surface hydrophobic protein (43 kDa) of A. lipoferum 1842 was unaffected by any starvation treatment for a period of up to 48 h, but later disappeared. These data showed that starvation is not a major factor in inducing changes in the cell surface which lead to the primary phase of attachment of Azospirillum to surfaces.  相似文献   

18.
Reduction of tetrazolium salts by sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract The reduction of tetrazolium salts by the sulfate-reducing bacteria, Desulfovibrio desulfuricans and Desulfotomaculum orientis , was examined. D. desulfuricans and D. orientis reduced triphenyltetrazolium chloride (TTC) and 2-( p -iodophenyl)-3-( p -nitrophenyl)-5-phenyltetrazolium chloride (INT) forming intracellular formazan deposits. The reduction rate of INT was higher than that of TTC. INT reduction was not inhibited by the addition of sulfate or molybdate, and sulfate uptake was inhibited by the addition of both INT and molybdate. The ratio of intracellular formazan forming cells to acridine orange direct counts in both strains decreased with culture age and starvation time.  相似文献   

19.
Mathematical models are presented for one-, two- and three -trophic-level microbial systems in continuous culture, based on the respective interactions of Escherichia coli and limiting glucose; glucose, E. coli, and the predaceous bacterium Bdellovibrio bacteriovorus; and glucose, E. coli, B. bacteriovorus, and a virus parasitic on B. bacteriovorus. These models contain explicit time lags to represent reproductive latent periods, and the importance of these to the behavior of the models is demonstrated. The models' behavior was investigated by algebraic analysis and by computer simulation using literature values for the parameters in the equations; equilibrium conditions and stability properties for the various microbial systems are presented over a wide range of potential environmental conditions. A sensitivity analysis indicates which parameters must be most accurately known in order to validate the model experimentally. The results delineate the range of experimental conditions permitting the study of all these continuous culture systems in the laboratory and generate predictions about persistence of such multi-level microbial systems in natures  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号