首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or “short-patch” (SP-BER), and “long-patch” BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.  相似文献   

2.
Whole embryo extract is routinely employed as a growth-promoting supplement in chick embryonic muscle cell cultures. In assessing the effect of the extract on muscle cell cultures, extracts of various embryonic tissues and organs were substituted for whole embryo extract and the effects on proliferation of dissociated 12-day chick embryonic leg muscle cells were observed. The effects were measured according to [3H]thymidine incorporation into deoxyribonucleic acid (DNA) and were confirmed with total cell counts. Brain and liver extracts were found to be especially effective in stimulating muscle cell proliferation. The extracts were found to be heat and trypsin labile. Further analysis of activity in the extracts by dialysis and Sephadex G-25 fractionation revealed the presence of at least two classes of activity—one of high molecular weight (>5000) and one of low molecular weight (<5000)—which must be present together to yield the full activity of crude extracts from embryonic liver and brain. The results are discussed against the background of our interest in the neurotrophic phenomenon.  相似文献   

3.
The treatment of bacterial diseases in aquaculture is done using antibiotics, their applications has resulted in contamination and bacterial resistance. Natural extracts are a potential alternative as an antimicrobial, they have demonstrated effectiveness in their use aimed at treating conditions. The purpose of this study was to evaluate the antimicrobial activity of Lemna minor extracts against Pseudomonas fluorescens with different solvent for extraction. Methanol, chloroform and hexane were used. Subsequently, the safety assessment of the extracts in Danio rerio embryos and larvae was performed to validate as ecologically harmless. Antibacterial activity was detected in three extracts with significant differences (p = 0.001). Hexane extract had the highest antibacterial activity, followed by chloroform and methanol extracts. The three extracts have differences with respect to the control, between times and concentrations tested (p = 0.001). Minimum inhibitory concentration values (MIC) at 24 h methanolic extract ME 0.05 µg mL−1. In embryos and larvae increased safety of the LC50 methanolic extract was evidenced followed by the hexane and chloroform extract. No morphological or tissue changes were observed in embryos and larvae. The hexane extracts of L. minor had a greater bactericidal effect against P. fluorescens and are functional because of their antibacterial activity, but methanolic extract is more safety in embryos and larvae of D. rerio, making it a potential alternative for use in the treatment and control of septicemia in fish.  相似文献   

4.
Extracts of Drosophila embryos and adults have been found to catalyze highly efficient DNA mismatch repair, as well as repair of 1- and 5-bp loops. For mispairs T · G and G · G, repair is nick dependent and is specific for the nicked strand of heteroduplex DNA. In contrast, repair of A · A, C · A, G · A, C · T, T · T, and C · C is not nick dependent, suggesting the presence of glycosylase activities. For nick-dependent repair, the specific activity of embryo extracts was similar to that of extracts derived from the entirely postmitotic cells of young and senescent adults. Thus, DNA mismatch repair activity is expressed in Drosophila cells during both development and aging, suggesting that there may be a function or requirement for mismatch repair throughout the Drosophila life span. Nick-dependent repair was reduced in extracts of animals mutant for the mei-9 gene. mei-9 has been shown to be required in vivo for certain types of DNA mismatch repair, nucleotide excision repair (NER), and meiotic crossing over and is the Drosophila homolog of the yeast NER gene rad1.  相似文献   

5.
Aqueous extracts from common tropical seaweeds were evaluated for their effect on the life cycle of the commercially important ectoparasite, Neobenedenia sp. (Platyhelminthes: Monogenea), through the survival of attached adult parasites, period of embryonic development, hatching success and oncomiracidia (larvae) infection success. There was no significant effect of any extract on the survival of adult parasites attached to fish hosts or infection success by oncomiracidia. However, the extracts of two seaweeds, Ulva sp. and Asparagopsis taxiformis, delayed embryonic development and inhibited egg hatching. The extract of A. taxiformis was most effective, inhibiting embryonic development of Neobenedenia sp. and reducing hatching success to 3% compared with 99% for the seawater control. Furthermore, of the 3% of eggs that hatched, time to first and last hatch was delayed (days 14 and 18) compared with the seawater control (days 5 and 7). Asparagopsis taxiformis shows the most potential for development as a natural treatment to manage monogenean infections in intensive aquaculture with the greatest impact at the embryo stage.  相似文献   

6.
Non-homologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair in mammalian cells and depends, among other things, on the DNA end-binding Ku70/80 heterodimer. To investigate the function of Ku in NHEJ we have compared the ability of cell-free extracts from wild-type CHO-K1 cells, Ku80-deficient xrs6 cells and Ku80-cDNA-complemented xrs6 cells (xrs6-Ku80) to rejoin different types of DSB in vitro. While the two Ku80-proficient extracts were highly efficient and accurate in rejoining all types of DNA ends, the xrs6 extract displayed strongly decreased NHEJ efficiency and accuracy. The lack of accuracy is most evident in non-homologous terminus configurations containing 3′-overhangs that abut a 5′-overhang or blunt end. While the sequences of the 3′-overhangs are mostly preserved by fill-in DNA synthesis in the Ku80-proficient extracts, they are always completely lost in the xrs6 extract so that, instead, small deletions displaying microhomology patches at their breakpoints arise. In summary, our results are consistent with previous results from Ku-deficient yeast strains and indicate that Ku may serve as an alignment factor that not only increases NHEJ efficiency but also accuracy. Furthermore, a secondary NHEJ activity is present in the absence of Ku which is error-prone and possibly assisted by base pairing interactions.  相似文献   

7.
Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when beta-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.  相似文献   

8.
Purification of PCNA as a nucleotide excision repair protein   总被引:11,自引:1,他引:10       下载免费PDF全文
Human cell free extracts carry out nucleotide excision repair in vitro. The extract is readily separated into two fractions by chromatography on a DEAE column. Neither the low salt (0.1 M KCl) nor the high salt (0.8 M KCl) fractions are capable of repair synthesis but the combination of the two restore the repair synthesis activity. Using the repair synthesis assay we purified a protein of 37 kDa from the high salt fraction which upon addition to the low salt fraction restores repair synthesis activity. Amino acid sequence analysis, amino acid composition and immunobloting with PCNA antibodies revealed that the 37 kDa protein is the proliferating cell nuclear antigen (PCNA) known to stimulate DNA Polymerases δ and ε. By using an assay which specifically measures the excision of thymine dimers we found that PCNA is not required for the actual excision reaction per se but increases the extent of excision by enabling the excision repair enzyme to turn over catalytically.  相似文献   

9.
Uracil-initiated base excision DNA repair was conducted using homozygous mouse embryonic fibroblast DNA polymerase beta (+/+) and (-/-) cells to determine the error frequency and mutational specificity associated with the completed repair process. Form I DNA substrates were constructed with site-specific uracil residues at U.A, U.G, and U.T targets contained within the lacZalpha gene of M13mp2 DNA. Efficient repair was observed in both DNA polymerase beta (+/+) and (-/-) cell-free extracts. Repair was largely dependent on uracil-DNA glycosylase activity because addition of the PBS-2 uracil-DNA glycosylase inhibitor (Ugi) protein reduced ( approximately 88%) the initial rate of repair in both types of cell-free extracts. In each case, the DNA repair patch size was primarily distributed between 1 and 8 nucleotides in length with 1 nucleotide repair patch constituting approximately 20% of the repair events. Addition of p21 peptide or protein to DNA polymerase beta (+/+) cell-free extracts increased the frequency of short-patch (1 nucleotide) repair by approximately 2-fold. The base substitution reversion frequency associated with uracil-DNA repair of M13mp2op14 (U.T) DNA was determined to be 5.7-7.2 x 10(-4) when using DNA polymerase beta (+/+) and (-/-) cell-free extracts. In these two cases, the error frequency was very similar, but the mutational spectrum was noticeably different. The presence or absence of Ugi did not dramatically influence either the error rate or mutational specificity. In contrast, the combination of Ugi and p21 protein promoted an increase in the mutation frequency associated with repair of M13mp2 (U.G) DNA. Examination of the mutational spectra generated by a forward mutation assay revealed that errors in DNA repair synthesis occurred predominantly at the position of the U.G target and frequently involved a 1-base deletion or incorporation of dTMP.  相似文献   

10.
Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported that DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB are resistant to DNA glycosylase activity and this study further examines the processing of these ‘complex’ lesions. We first demonstrated that the damaged base should be excised before SSB repair can occur, since it impaired processing of the SSB by the BER enzymes, DNA ligase IIIα and DNA polymerase β. Using human whole cell extracts, we next isolated the major activity against DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB and identified it as DNA polymerase δ (Pol δ). Using recombinant protein we confirmed that the 3′-5′-exonuclease activity of Pol δ can efficiently remove these DNA lesions. Furthermore, we demonstrated that mouse embryonic fibroblasts, deficient in the exonuclease activity of Pol δ are partially deficient in the repair of these ‘complex’ lesions, demonstrating the importance of Pol δ during the repair of DNA lesions in close proximity to a DNA SSB, typical of those induced by ionizing radiation.  相似文献   

11.
Deoxyinosine (dI) in DNA can arise from hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the nfi gene product, in Escherichia coli. Repair was studied in vitro using M13mp18 derived heteroduplexes containing a site-specific deoxyinosine. Unpaired dI/G mismatch resides within the recognition site for XhoI restriction endonucleases, permitting evaluation of repair occurring on deoxyinosine-containing DNA strand. Our results show that dI lesions were efficiently repaired in nfi+ E. coli extracts but the repair level was much reduced in nfi mutant extracts. We subjected the deoxyinosine-containing heteroduplex to a purified system consisting of soluble endonuclease V fusion protein, DNA polymerase I, and DNA ligase, along with the four deoxynucleoside triphosphates. Interestingly we found these three proteins alone are sufficient to process the dI lesion efficiently. We also found that the 3′-exonuclease activity of DNA polymerase I is sufficient to remove the dI lesion in this minimum reconstituted assay.  相似文献   

12.
Sandoval A  Labhart P 《DNA Repair》2002,1(5):397-410
Using the Xenopus egg extract as an in vitro system for double strand break repair, the joining of DNA ends bearing non-complementary, homopolymeric, 4nt 3'-protruding single strands ("overhangs") was examined. Such 3'-overhangs can not be filled-in and cannot align and anneal by canonical base pair interactions, thus presenting a special challenge to the repair machinery. The results indicate that two such non-matching 3'-overhangs typically overlap by 2nt forming non-canonical base pairs, from which the filling-in of the remaining gaps is primed. The repair reaction is inhibited in Ku-depleted extracts. Unexpectedly, with some of the substrates the predominant repair products were joints with no nucleotide loss, suggesting that the two DNA ends aligned without overlap. However, the additional finding that an activity in the egg extract adds one or a few nucleotides to a fraction of the 3'-ends favors a model in which most or all of the zero-loss joints are the net result of 3'-overhang extension and 2bp overlap formation. The nucleotide addition reaction is stimulated by increasing the concentration of the complementary dNTP or ddNTP in the extract, suggesting a process templated by free nucleotides and the involvement of a DNA polymerase-like activity.  相似文献   

13.
Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.  相似文献   

14.
Due to the negative consequences carried by the usage of synthetic insecticides, a global interest into finding substitutes for these chemical compounds through natural products has arisen. When yielded to external attacks, plants generally produce metabolites to defend themselves. The physicochemical characteristics of this kind of compounds have allowed their usage as potential bioinsecticides. The Hymenaea courbaril L. (algarrobo) has proven to be a plant rich in metabolites with outstanding biological activity, in such a way that some of its extracts have been tested as insecticides. The goal of this study was to know the phytochemical composition of Hymenaea courbaril L.’s resin and perform evaluations in vivo of its toxic and genotoxic effects in the biological model Drosophila melanogaster. For this, two resin extracts were prepared and both a phytochemical analysis were carried out on them, having found in the ethanolic total extract the presence of terpenes, flavonoids and coumarins, while in the partial ethanolic extract only presence of terpenes and flavonoids was found. Drosophila larvae were submitted to different concentrations of the extracts and both the survival and the sexual ratio were evaluated, finding that larvae are more sensitive to the partial ethanolic extract. Subsequently, the induction of somatic mutation and mitotic recombination (SMART) was evaluated in the flies’ eyes. The most significant affectations at a genotoxic level were found when larvae were tested with the partial extract, indicating that possibly the coumarins absence makes this insect more susceptible to damages at a genetic material level.  相似文献   

15.
Extracts of the human glioma cell line A1235 (lacking O6-methylguanine-DNA methyltransferase) are known to restore a G:T mismatch to a normal G:C pair in a G:T-containing model (45 bp) DNA substrate. Herein we demonstrate that substitution of G:T with O6-methylguanine:T (m6G:T) results in extract-induced intra-strand incision in the DNA at an efficiency comparable to that of complete repair of the G:T-containing substrate, although the m6G:T mispair serves as a poor substrate for later repair steps (e.g. gap filling, as judged by defective DNA repair synthesis). The A1235 extract, when supplemented with ATP and the four normal dNTPs, incises 5′ to the mismatched T, as inferred by the generation of a single-stranded 20mer fragment. Unlike its parental (A1235) counterpart, an extract of the alkylation-tolerant derivative cell line A1235-MR4 produces no 20mer fragment, even when thymine-DNA glycosylase (TDG) is added to the reaction mixture. In contrast, the A1235 extract, when augmented with TDG, catalyzes enhanced incision at m6G:T in the 45 bp DNA, yielding 5–10-fold greater 20mer than that of either extract or TDG alone. Interestingly, the absence of m6G:T incision activity in the A1235-MR4 extract is similar to that seen for extracts of several known mismatch repair-deficient cell lines of colon tumor origin. Together these results suggest that derivative A1235-MR4 cells are defective in m6G:T incision activity and that the efficiency of this activity in the parental (A1235) cells may depend on the presence of several ill-defined mismatch repair recognition proteins along with TDG and ATP.  相似文献   

16.
Trinucleotide repeat expansions cause 17 heritable human neurological disorders. In some diseases, somatic expansions occur in non-proliferating tissues such as brain where DNA replication is limited. This finding stimulated significant interest in replication-independent expansion mechanisms. Aberrant DNA repair is a likely source, based in part on mouse studies showing that somatic expansions are provoked by the DNA repair protein MutSβ (Msh2-Msh3 complex). Biochemical studies to date used cell-free extracts or purified DNA repair proteins to yield partial reactions at triplet repeats. The findings included expansions on one strand but not the other, or processing of DNA hairpin structures thought to be important intermediates in the expansion process. However, it has been difficult to recapitulate complete expansions in vitro, and the biochemical role of MutSβ remains controversial. Here, we use a novel in vitro assay to show that human cell-free extracts catalyze expansions and contractions of trinucleotide repeats without the requirement for DNA replication. The extract promotes a size range of expansions that is similar to certain diseases, and triplet repeat length and sequence govern expansions in vitro as in vivo. MutSβ stimulates expansions in the extract, consistent with aberrant repair of endogenous DNA damage as a source of expansions. Overall, this biochemical system retains the key characteristics of somatic expansions in humans and mice, suggesting that this important mutagenic process can be restored in the test tube.  相似文献   

17.
The efficient repair of double-strand breaks (DSBs) in DNA is critical for the maintenance of genome stability. In mammalian cells, repair can occur by homologous recombination or by non-homologous end joining (NHEJ). DNA breaks caused by reactive oxygen or ionizing radiation often contain non- conventional end groups that must be processed to restore the ligatable 3'-OH and 5'-phosphate moieties which are necessary for efficient repair by NHEJ. Here, using cell-free extracts that efficiently catalyse NHEJ in vitro, we show that human polynucleotide kinase (PNK) promotes phosphate replacement at damaged termini, but only within the context of the NHEJ apparatus. Phosphorylation of terminal 5'-OH groups by PNK was blocked by depletion of the NHEJ factor XRCC4, or by an inactivating mutation in DNA-PK(cs), indicating that the DNA kinase activity in the extract is coupled with active NHEJ processes. Moreover, we find that end-joining activity can be restored to PNK-depleted extracts by addition of human PNK, but not bacteriophage T4 PNK. This work provides the first demonstration of a direct, specific role for human PNK in DSB repair.  相似文献   

18.
《Journal of Asia》2006,9(2):159-164
Caesalpinia crista seed extracts were investigated in the laboratory against Helicoverpa armigera (Hubner). The extracts exhibited powerful antifeedant and growth disruption activity. The toxic symptoms of the poisoned larvae included reduction in weight gain and mortality of larvae and pupae, larval-pupal intermediates and malformed adults. Maximum anti-feedance is caused by methanol extract (AI50=0.0186%), followed by hexane extract (0.0212%), ethyl acetate extract (0.0416%), butanol extract (0.0767%) and aqueous extract (0.2199%). The larval mortality ranged from 10.00 to 70.00% in different extracts. The 50% larval growth inhibition recorded at 3DAT was statistically at par by methanol and hexane extract. The percent 150 values for inhibiting normal adult emergence were 0.0287, 0.0325, 0.0485, 0.0977 and 0.0547% for methanol, hexane, ethyl acetate, aqueous and butanol extract. The biosafety evaluation of these extracts carried out against the predator, Coccinella septumpunctata showed no mortality of the adults till nine days after treatment. Though the observation taken at 10 DAT, showed slight mortality of adults by methanol extract at both 5.0 and 1.0% concentration.  相似文献   

19.
20.
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号