首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence has suggested that the endogenous antipyretic arginine vasopressin (AVP) may participate in drug-induced antipyresis. This study sought to further those investigations by comparing the effects of two other antipyretic drugs, sodium salicylate and acetaminophen, administered intraperitoneally, during AVP V1-receptor blockade within the ventral septal area (VSA) of the rat brain. During endotoxin-evoked fever, V1-receptor blockade within the VSA of the conscious unrestrained rat significantly antagonized the antipyretic effects of salicylate. The effects of the V1-antagonist on salicylate-induced antipyresis were dose related. In contrast, the antipyresis elicited by acetaminophen was unaffected by VSA V1-antagonist pretreatment. Neither saline nor the V1-antagonist microinjected into the VSA of febrile or nonfebrile rats had any significant effects on the normal progression of endotoxin fever or normal core temperature, respectively. These data suggest that the mechanism of action of salicylate-induced antipyresis includes activation of AVP V1-type receptors within the VSA, as has been shown for indomethacin. However, the lack of effect of the V1-antagonist on antipyresis induced by acetaminophen indicates that not all antipyretic drugs act through the same mechanism in the brain.  相似文献   

2.
Wang HD  Wang YP  Hu CF  Qi RB  Yan YX  Lu DX  Li CJ 《生理学报》2001,53(6):465-468
实验对大鼠进行第三脑室和脑腹中隔区插管,用数字体温计测量大鼠的结肠温度,用放射免疫分析法测定脑中隔区精氨酸加压素(arginine vasopressin,AVP)含量,观察脑中隔区AVP在大鼠促肾上腺皮质激素释放激素(corticotrophin releasing hormone,CRH)性发热机制中的作用。结果发现:脑室注射CRH(5.0μg)引起大鼠结肠温度明显升高,同时明显增高脑中隔区AVP的含量。脑腹中隔区注射AVP V1受体拮抗剂本身并不导致大鼠结肠温度明显改变,但能显著增强脑室注射CRH引起的发热反应。而且,腹中隔区注射AVP显著抑制大鼠CRH性发热。结果提示:发热时CRH是引起脑腹中隔区AVP释放的因素之一,脑腹中隔区内源性AVP抑制中枢注射CRH引起的体温升高。  相似文献   

3.
Central arginine vasopressin and endogenous antipyresis.   总被引:6,自引:0,他引:6  
Arginine vasopressin (AVP) is a centrally synthesized nonapeptide that exerts classical endocrine effects as well as a host of centrally mediated actions. A strong case can be argued in support of a neurotransmitter-neuromodulator role for AVP. Acting within the central nervous system (CNS), AVP has been demonstrated to be involved in the modulation of febrile body temperature. Because AVP acts to reduce pyrogen-induced fevers, but not normal body temperature, its actions are deemed to be antipyretic. However, to demonstrate an endogenous antipyretic function, AVP must be shown to be active during conditions where fever is naturally suppressed. This review will focus on five such conditions where the absence of pyrogen-induced fever can be linked to the endogenous activity of AVP within the brain. In the neonatal rat pup, the use of specific antagonists to the AVP receptor has revealed a role for CNS AVP in the absence of fever following peripheral injections of bacterial endotoxin. These results may help to explain a similar lack of fever in other newborn species. In parturient animals a reduced or absent febrile response has been linked to the increased presence of AVP within the septal area of the brain. The combined use of AVP receptor antagonism as well as immunohistochemistry has shown enhanced AVP activity within the ventral septal area of the rat and guinea pig brain during tolerance to intravenous pyrogens. These results suggest that the mechanism of fever suppression following repeated systemic injections of bacterial pyrogen includes centrally acting AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of centrally administered autonomic drugs and hypertonic saline on renin release were studied in the conscious rat. A 0.3 mug intraventricular dose of isoproterenol, which is one-thirtieth of the intraperitoneal dose required to stimulate renin release, induced the release of renin into the systemic circulation. Norepinephrine had no effect on renin release in the same dose range. Hypertonic saline and carbachol suppressed renin release. Alterations in renin release were preceded by a reciprocal change in blood pressure. These results suggest a central nervous system site for sodium, beta-adrenergic, and cholinergic receptors in altering renin release and blood pressure.  相似文献   

5.
Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300-325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg(-1)·h(-1)) or dextrose prior to a 60-min fixed-pressure hemorrhage (~40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg(-1)·min(-1)). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.  相似文献   

6.
Arginine vasopressin (AVP) has been reported to have an antipyretic effect in the ewe and guinea pig near term. Perfusions with AVP of sites in the septal region also reduced fever in non-pregnant sheep. In the present experiments adult rabbits with third cerebral ventricular or septal cannulas were restrained in a 23°C environment, and rectal temperature was recorded every 10 min. Fever induced by IV administration of leukocytic pyrogen was not reduced by AVP (25–100 ng) given intraventricularly 20 min later. Doses of 1–5 μg AVP injected into the septum likewise were not antipyretic but actually caused an increase in fever. This augmentation of the febrile response is consistent with results of previous studies in this laboratory in which AVP increased hyperthermia in a hot environment and enhanced hyperthermic responses to PGE2. The data from these experiments provide no evidence that central AVP is an endogenous antipyretic in rabbits; rather, it may be that central AVP augments fever in this species.  相似文献   

7.
R.J. Lee  P. Lomax   《Peptides》1983,4(6):801-805
Recent reports suggest that arginine vasopressin (AVP) may be an endogenous antipyretic peptide and a mediator of febrile convulsions [10,12]. The spontaneously seizing Mongolian gerbil was used to investigate the thermoregulatory, behavioral and seizure modulatory effects of AVP. Injection of AVP (1.0 and 5.0 μg IV and 0.01–1.0 mg/kg SC) caused dose-related falls in body temperature. Stereotypic scratching, terminated by a body shake, was observed after AVP (1.0–5.0 μg IV). However, such behavior was not observed after subcutaneous injection of AVP. AVP did not potentiate seizure induction in the gerbils but rather reduced the seizure incidence. The data demonstrate that AVP can reduce body temperature and cause specific behaviors, but it does not appear to play a role in the pathogenesis of seizures in the seizure sensitive strain of Mongolian gerbil.  相似文献   

8.
The changes in the levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) in the neurointermediate lobe of the pituitary (NIL) following hypertonic saline administration were examined in rats. The plasma osmotic pressure in rats receiving 2% NaCl for 8 days was greatly increased. Plasma AVP concentration in rats receiving 2% NaCl for 8 days were significantly higher than in control rats (566% of the control level). Plasma corticosterone was significantly higher in the saline-treated rats than in controls, whereas plasma ACTH was not significantly different. The pituitary ACTH concentration was much higher in the saline-treated rats than in controls. CRH in the NIL was increased significantly by saline treatment (419% of the control concentration), whereas the CRH in the paraventricular nucleus and median eminence of control and saline-treated rats did not differ significantly. The AVP in the NIL fell greatly in saline treated rats. The extract from both control and saline-treated rats showed a major peak for immunoreactive CRH, with a retention time identical to that of rat CRH. However, the peak was much higher in the extract from saline-treated rats. The immunoreactive AVP peak was greatly reduced in saline-treated rats. These results suggest that hypertonic saline administration increases the CRH in the NIL and causes AVP hypersecretion and/or hyperfunction of magnocellular-NIL CRH might be responsible for pituitary-adrenal stimulation in saline-treated rats.  相似文献   

9.
本实验观察了发热家兔脑脊液(CSF)和血浆中精氨酸加压素(AVP)含量的变化及禁水对家兔内毒素(ET)发热效应的影响。实验结果表明:1.隔区注射AVP可明显抑制家兔ET性发热效应;2.发热组家兔CSF和血浆中AVP含量较正常组明显降低;3.禁水可明显对抗家兔ET性发热效应,其抗热作用与CSF和血浆中AVP含量升高有关;4.禁水也可使正常家兔体温水平下移。上述实验结果提示,AVP可能是家兔体内一种内源性退热物质,同时在正常体温调节中也可能发挥一定的作用。  相似文献   

10.
Hypertonic preconditioning inhibits macrophage responsiveness to endotoxin.   总被引:6,自引:0,他引:6  
Hypertonic saline has been shown to modulate cell shape and the response of components of the innate immune response. However, the effect of hypertonic saline on the macrophage remains unknown. We hypothesized that hypertonic preconditioning would impair subsequent inflammatory mediator signaling through a reduction in stress fiber polymerization and mitogen-activated protein kinase activity after LPS stimulation. Rabbit alveolar macrophages were stimulated with 100 ng/ml of LPS. Selected cells were preconditioned with 40-100 mM of NaCl, mannitol, or urea for 4 h and returned to isotonic medium before LPS stimulation. Cellular protein was harvested and subjected to Western blot analysis for the dually phosphorylated active forms of p38 and extracellular signal-related kinase (ERK) 1/2. TNF production was determined by an L929 bioassay, and stress fiber polymerization was evaluated by confocal microscopy. Preconditioning of macrophages with NaCl or mannitol resulted in dose-dependent reduction in ERK 1/2 phosphorylation with no effect on p38 phosphorylation. Urea preconditioning had no effect on either mitogen-activated protein kinase. A dose-dependent attenuation of TNF production was seen with NaCl and mannitol preconditioning (p < 0.05), but not with urea. NaCl and mannitol preconditioning resulted in failure of LPS-induced stress fiber polymerization, whereas urea did not. Extracellular hypertonic conditions (i.e., NaCl and mannitol) have an immunomodulatory effect on macrophages, demonstrated through failure of optimal stress fiber polymerization, ERK 1/2 activity, and TNF production. Intracellular hypertonic conditions (i.e., urea) had no significant effect. Hypertonic saline or mannitol resuscitation, therefore, may help protect against multiple-organ dysfunction syndrome as a result of this reduced proinflammatory responsiveness.  相似文献   

11.
Systemic plasma concentrations of arginine vasopressin (AVP) were studied in three groups of 10-15 day-old conscious newborn calves. Animals in the first group (control group) and in the second group (systemic-hypertonic-injected group) received respectively isotonic and hypertonic (8 mmol NaCl/kg body weight) saline injection into the right jugular vein. Animals in the third group were fitted with chronic mesenteric and hepatic-portal catheters and received a 1 h-hypertonic saline infusion (2 mmol NaCl/kg body weight) into the main mesenteric vein. In animals in the second group there were parallel increases in systemic plasma concentration of Na+ (from 148.0 +/- 2.6 to 177 +/- 8 mmol/l; P less than 0.01), osmolality (from 289 +/- 2 to 319 +/- 4 mOsmol/kg H2O; P less than 0.01) and systemic plasma concentrations of AVP (from 4.2 +/- 0.4 to 11.1 +/- 0.6 pmol/l; P less than 0.01) 10 min after the injection. There were no significant changes in control animals. Hypertonic saline infusion into the main mesenteric vein in the third group induced an increase in concentration of Na+ (from 147.3 +/- 2.0 to 165.0 +/- 5.0 mmol/l; P less than 0.01) and osmolality (from 288 +/- 5 to 315 +/- 10 mOsmol/kg H2O; P less than 0.01) in hepatic-portal vein plasma but did not alter systemic plasma osmolality or concentrations of Na+ and AVP. This study demonstrates that the relationship between plasma concentrations of AVP and systemic osmolality is operative in the newborn calf but does not support the hypothesis that hepatic portal osmo-receptors sensitive to hyperosmolality influence AVP release.  相似文献   

12.
The influence of aminergic pathways on basal and stimulated vasopressin (AVP) release was studied in conscious rats, the stimulus for hormone release being an intracerebroventricular (ICV) injection of 5 microliters 0.85M sodium chloride. The animals were treated with either phenoxybenzamine, propranolol or haloperidol prior to administration of the central hypertonic stimulus. Phenoxybenzamine elevated basal plasma vasopressin concentrations, while propranolol and haloperidol had no effect. The secretion of AVP in response to the hypertonic stimulus was potentiated by phenoxybenzamine and haloperidol, but the effect of propranolol was equivocal. The antagonists had no effect on basal arterial pressure at the time of hypertonic saline administration or the pressor response to ICV sodium chloride.  相似文献   

13.
Whether or not 1-desamino-8-D-arginine-vasopressin (DDAVP) reduces blood pressure or affects the release of arginine vasopressin (AVP) and renin is controversial, although evidence suggests AVP and renin are important in maintaining blood pressure during hemorrhage. We therefore investigated the effect of DDAVP on endogenous release of AVP and renin and on blood pressure during hemorrhage in dogs. In the control group the hemorrhage was performed at a rate of 0.4 ml.kg-1.min-1 for 40 min from the femoral artery. The plasma AVP concentration and renin activity (PRA) increased progressively in response to the hemorrhage, from 7.5 +/- 0.5 to 40.3 +/- 7.3 pg.ml-1, and from 11.8 +/- 1.5 to 20.5 +/- 4.2 ng.ml-1.h-1, respectively, while blood pressure decreased slightly. In the DDAVP group, intravenous infusion of DDAVP (2.5 ng.kg-1.min-1 for 40 min) and hemorrhage were simultaneously performed. The plasma DDAVP concentration increased progressively to 218 +/- 21.0 pg.ml-1. There was no significant difference, however, between the control and DDAVP groups in the response of AVP, PRA and blood pressure. The results suggested that DDAVP may not affect the release of AVP and renin or blood pressure during hemorrhage.  相似文献   

14.
1. Addition of 1-chloro-2,4-dinitrobenzene to isolated perfused rat liver results in the rapid formation of its glutathione-S-conjugate [S-(2,4-dinitrophenyl)glutathione], which is released into both, bile and effluent perfusate. Anisotonic perfusion did not affect total S-conjugate formation, but release of the S-conjugate into the perfusate was increased (decreased) following hypertonic (hypotonic) exposure at the expense of excretion into bile. Stimulation of S-conjugate release into the perfusate following hypertonic exposure paralleled the time course of volume-regulatory net K+ uptake. 2. Basal steady-state release of oxidized glutathione (GSSG) into bile was 1.30 +/- 0.12 nmol.g-1.min-1 (n = 18) during normotonic (305 mOsmol/l) perfusion and was 3.8 +/- 0.3 nmol.g-1.min-1 in the presence of t-butylhydroperoxide (50 mumol/l). Hypotonic exposure (225 mOsmol/1) lowered both, basal and t-butylhydroperoxide (50 mumol/l)-stimulated GSSG release into bile by 35% and 20%, respectively, whereas hypertonic exposure (385 mOsmol/l) increased. Anisotonic exposure was without effect on t-butylhydroperoxide removal by the liver. GSSG release into bile also decreased by 33% upon liver-cell swelling due to addition of glutamine plus glycine (2 mmol/l, each). 3. Hypotonic exposure led to a persistent stimulation 14CO2 production from [1-14C]glucose by about 80%, whereas 14CO2 production from [6-14C]glucose increased by only 10%. Conversely, hypertonic exposure inhibited 14CO2 production from [1-14C]glucose by about 40%, whereas 14CO2 production from [6-14C]glucose was unaffected. The effect of anisotonicity on 14CO2 production from [1-14C]glucose was also observed in presence of t-butylhydroperoxide (50 mumol/l), which increased 14CO2 production from [1-14C]glucose by about 40%. 4. t-Butylhydroperoxide (50 mumol/l) was without significant effect on volume-regulatory K+ fluxes following exposure to hypotonic (225 mOsmol/l) or hypertonic (385 mOsmol/l) perfusate. Lactate dehydrogenase release from perfused rat liver under the influence of t-butylhydroperoxide was increased by hypertonic exposure compared to hypotonic perfusions. 5. The data suggest that hypotonic cell swelling stimulates flux through the pentose-phosphate pathway and diminishes loss of GSSG under conditions of mild oxidative stress. Hypotonically swollen cells are less prone to hydroperoxide-induced lactate dehydrogenase release than hypertonically shrunken cells. Hypertonic cell shrinkage stimulates the excretion of glutathione-S-conjugates into the sinusoidal circulation at the expense of biliary secretion.  相似文献   

15.
Vasoactive intestinal polypeptide (VIP) was infused into the aorta of pentobarbitone-anesthetized rats (n = 12) in stepwise increasing doses of 0.001 to 10 micrograms/rat at rates varying from 0.3 pmol/min/kg to 3000 pmol/min/kg over 3 min. Blood was withdrawn from the vena cava inferior for the measurement of oxytocin (OT) and vasopressin (AVP) by RIA. The loss of blood was compensated for by infusion of isotonic saline (0.9% NaCl with 0.5% human serum albumin). Control rats received this solution only (n = 11). VIP infusions resulted in a dose-dependent increase in plasma OT which was significantly greater than the slight rise observed in the controls. The difference from controls was significant at infusion rates of 3 pmol/min/kg and more. Plasma AVP, on the other hand, did not rise in response to VIP infusions until the infusion rate was increased to 300 and 3000 pmol/min/kg. At these infusion rates, the increments in AVP were much smaller than those of OT, the levels during the highest infusion rates rising to 8.6 +/- 2.8 and 27.2 +/- 4.8 microU/ml, respectively (log normal means). The preferential release of OT in response to exogenous VIP in rats differs from the response in cats where intracarotid administration of VIP resulted in the release of proportionately more AVP than OT. Immunoreactive VIP is found in the hypothalamo-neurohypophyseal system of rats in close proximity of some of the magnocellular neurons as well as within the nerve terminals. This, together with our data, suggests that endogenous VIP may participate in the release mechanism for OT in rats.  相似文献   

16.
Increases in central venous pressure and arterial pressure have been reported to have variable effects on normal arginine vasopressin (AVP) levels in healthy humans. To test the hypothesis that baroreceptor suppression of AVP secretion might be more likely if AVP were subjected to a prior osmotic stimulus, we investigated the response of plasma AVP to increased central venous pressure and mean arterial pressure after hypertonic saline in six normal volunteers. Plasma AVP, serum osmolality, heart rate, central venous pressure, mean arterial pressure, and pulse pressure were assessed before and after a 0.06 ml.kg-1.min-1-infusion of 5% saline give over 90 min and then after 10 min of 30 degrees head-down tilt and 10 min of head-down tilt plus lower-body positive pressure. Hypertonic saline increased plasma AVP. After head-down tilt, which did not change heart rate, pulse pressure, or mean arterial pressure but did increase central venous pressure, plasma AVP fell. Heart rate, pulse pressure, and central venous pressure were unchanged from head-down tilt values during lower-body positive pressure, whereas mean arterial pressure increased. Plasma AVP during lower-body positive pressure was not different from that during tilt. Osmolality increased during the saline infusion but was stable throughout the remainder of the study. These data therefore suggest that an osmotically stimulated plasma AVP level can be suppressed by baroreflex activation. Either the low-pressure cardiopulmonary receptors (subjected to a rise in central venous pressure during head-down tilt) or the sinoaortic baroreceptors (subjected to hydrostatic effects during head-down tilt) could have been responsible for the suppression of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glucose administration to rodents acutely stimulates leptin secretion. To investigate the mechanism, rats were infused intravenously with various concentrations of glucose, and plasma leptin concentrations were measured with time. The osmolality of the infusates was equalized with various concentrations of carbohydrates that are not metabolized. Hyperosmolar glucose stimulates leptin secretion in a dose-dependent manner, with peak plasma leptin concentrations occurring approximately 3 h after the end of the glucose infusion. Hypertonic infusions of galactose, mannitol, and sodium chloride independently stimulate leptin secretion with approximately one-half the strength of equivalent osmolar concentrations of glucose. Peak plasma leptin concentrations occur approximately 4 h after the end of the hypertonic solution infusion. Hypertonic solutions of mannitol do not stimulate leptin secretion in vasopressin-deficient or in adrenalectomized animals. In conclusion, intravenous infusions of hypertonic glucose and hypertonic mannitol independently stimulate leptin secretion. Hyperosmolality stimulates leptin secretion by a vasopressin-adrenal mechanism.  相似文献   

18.
The intracerebroventricular (i.c.v.) administration of arginine vasopressin (AVP), in the febrile rat elicits an antipyresis at cold, warm and neutral ambient temperatures. These experiments were conducted, therefore, to elucidate the thermoregulatory effector mechanisms responsible for this antipyretic effect. At 25 degrees C, AVP-induced antipyresis was mediated by tail skin vasodilation while metabolic rate was unaffected. At 4 degrees C, the antipyresis produced by AVP was approximately double that seen at 25 degrees C. This effect appeared to be mediated exclusively by inhibition of heat production since the metabolic rate decreased markedly following AVP. This antipyresis at 4 degrees C was accompanied by cutaneous vasoconstriction. At 32 degrees C, neither vasomotor tone, metabolic rate nor evaporative heat loss could be shown to contribute to the small antipyretic effect elicited by AVP. We conclude from these data that i.c.v. AVP is producing antipyresis by affecting the febrile body temperature set-point mechanism since the thermoregulatory strategy to lose heat varies at different ambient temperatures and the decrease in body temperature cannot be shown to be due to changes in a single effector mechanism.  相似文献   

19.
Intraperitoneal injection of deionized water (0.25ml/10 g body wt) produced a large increase in ornithine decarboxylase activity in cerebral cortex and heart of 6 day old rats, but had no effect on those activities in the 20 day old rat. Injection of the same dose of hypertonic (1.8%) saline caused a marked decline in the activity of this enzyme in both cerebral cortex and heart of the 6 day old rat and in the heart of 20 day old rats. In neonatal rats, the increase in heart ornithine decarboxylase elicited by the injection of water and the decline in activity which follows the injection of hypertonic saline were both evident within 30 minutes after injection; both effects were maximal two hours post-injection and both persisted for longer than four hours after injection. A decline in enzyme activity observed after injection of hypertonic saline was also found following the injection of hypertonic glucose, suggesting that osmotic effects, rather than specific ion effects, were mediating the loss of activity. The KM of ornithine decarboxylase in neonatal heart decreased following hypertonic saline injection, whereas that of cerebral cortex did not, supporting previous suggestions that the ornithine decarboxylase in heart may have unique regulatory controls.  相似文献   

20.
AVP synthesis, storage, and osmotically stimulated release are reduced in young adult rats exposed prenatally to ethanol (PE). Whether the reduced release of AVP to the osmotic stimulus is due to impairment of the vasopressin system or specifically to an osmoreceptor-mediated release is not known. The present experiments were done, therefore, to determine whether a hemorrhage-induced AVP response would also be diminished in PE-exposed rats. Pregnant rats were fed either a control liquid diet [no prenatal ethanol (NPE)] or a liquid diet with 35% of the calories from ethanol from days 7-21 of pregnancy. Offspring were weaned at 3 wk of life. At 11 wk of age, femoral arterial catheters were surgically placed, and blood volumes were determined at 12 wk. Three days later, two hemorrhages of 10% of the blood volume were performed with samples taken before and 10 min after the hemorrhages. After a 20% blood loss, plasma AVP was 19% higher in NPE rats than in the PE rats despite no differences in mean arterial blood pressure (MABP). Also, hypothalamic AVP mRNA and pituitary AVP content were reduced in PE rats. Furthermore, confirming an earlier report of sex differences in AVP release, the hemorrhage-induced hormone response was twofold greater in female rats than male rats, regardless of previous ethanol exposure. These studies demonstrate that the AVP response to hemorrhage is reduced in PE rats independently of differences in MABP. The data are compatible with a theory of a reduced number of hemorrhage-responsive vasopressinergic neurons capable of stimulated AVP release in PE rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号