首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of environmental parameters on the biodegradation of oil sludge.   总被引:24,自引:0,他引:24  
A laboratory study was conducted with the aim of evaluating and optimizing the environmental parameters of "landfarming", i.e., the disposal by biodegradation in soil of oily sludges generated in the refining of crude oil and related operations. Oil sludge biodegradation was monitored by CO2 evolution and by periodic analysis of residual hydrocarbons. The parameters studied were soil moisture, pH, mineral nutrients, micronutrients, organic supplements, treatment rate, teratment frequency, and incubation temperature. Oil sludge biodegradation was optimal at a soil water-holding capacity of 30 to 90%, a pH of 7.5 to 7.8, C:N and C:P ratios of 60:1 and 800:1, respectively, and a temperature of 20 degrees C or above. Addition of micronutrients and organic supplements was not beneficial; sewage sludge interfered with hydrocarbon biodegradation. Breakdown of the saturated hydrocarbon (alkane and cycloalkane) fraction was the highest at low application rates, but higher application rates favored the biodegradation of the aromatic and asphaltic fractions. An application rate of 5% (wt/wt) oil sludge hydrocarbon to the soil (100,000 liters/hectare) achieved a good compromise between high biodegradation rates and efficient land use and resulted in the best overall biodegradation rate of all hydrocarbon classes. Frequent small applications resulted in higher biodegradation than single large applications. Two 100,000-liter/hectare (255 barrels per acre) or four 50,000-liter/hectare oil sludge hydrocarbon applications per growing season seem appropriate for most temperate zone disposal sites.  相似文献   

2.
Two bioremediation technologies were performed in order to explore a better treatment process for an oily sludge restoration in China during 2004. The bioremediation by augmentation of biopreparation was compared with a conventional composting. The oily sludge and oil-polluted soil were received from an oil production plant. The total hydrocarbon content (THC) varied from 327.7 to 371.2 g kg−1 of dry sludge and the THC in contaminated soil was 151.0 g kg−1. Before application of preparation, straw, sawdust, top sand and pure soil were added in different proportions to the sludge and soil and mixed thoroughly. Such sludge and soil composites were used for negative controls and for activation of indigenous oil degrading microorganisms with addition of fertilizer (positive controls). For composting, crude manure and straw were added to the oily sludge and the THC was 101.4 g kg−1. The biopreparation was applied every 2 weeks and experiment lasted 56 days under the ambient temperature. The sludge was mixed and watered every 3 days. After three times of biopreparation application, the THC decreased by 46–53% in the oily sludge and soil, while in the positive controls (activation of indigenous microorganisms) the THC decreased by 13–23%, and there was no oil degradation in negative controls After composting, the THC decreased by 31% in the oily sludge. The planting of Tall Fescue (Festuca arundinace) revealed a decrease of sludge toxicity after application of both bioremediation technologies and additionally decreased the THC by 5–7%.  相似文献   

3.
Soil microorganisms were not inhibited by mixing oily sludge in soil up to 8.7% (w/w) oil (15% sludge). Adding NH 4 + and phosphate increased microbial activity. Microbial activity was also affected by seasonal variation. Thermotolerant microorganisms were more predominant during the summer. After 29 months, 72%, 84%, and 83% of the soil was degraded in fertilized soils dosed with 2.9, 5.8 and 8.7% oil, respectively.  相似文献   

4.
随着养殖业的发展禽畜废弃物已经成为有机废弃物的主要来源之一,并产生了很多恶臭气体,对环境造成了严重污染。论述了恶臭气体的发生、危害及国内外物理、化学、生化和生物法过程控制的研究进展,并在此基础上提出了微生物在禽畜废弃物恶臭气体控制中的问题和研究展望。  相似文献   

5.
论城市污泥农用资源化与可持续发展   总被引:94,自引:7,他引:94  
根据可持续发展观的基本思想,在对城市污泥的特征、处理现状及其对农业和城市发展的影响进行分析的基础上,认为城市污泥的农用资源化对于城市和农业的可持续发展具有重要意义和紧迫性,也是未来城市污泥处置的根本出路,关键在于控制污泥中毒性污染物的含量,科学合理地施用。  相似文献   

6.
Dinitrogen-fixing activity (acetylene reduction and N(2) fixation) was found in an oily sludge originating from a petroleum refinery. Two representative dinitrogen-fixing bacterial strains were isolated from this oily waste. Their nitrogenase activity was effective when they were cultivated on sterilized sludge or simple carbon substrates (organic acid salts, sugars). Using the classical methods, these strains could not be unambiguously related to other diazotrophic taxa. The landfarming process is widely used for oily sludge disposal; this study shows that oily sludges are more than a simple carbon input into the soil but that they must also be considered as real sources of dinitrogen-fixing and probably degradative microorganisms.  相似文献   

7.
Survival of enteroviruses and coliform bacteria in a sludge lagoon.   总被引:4,自引:4,他引:0       下载免费PDF全文
Enteroviruses associate with aerobically and anaerobically digested sludge were determined before the addition of the sludge to a sludge lagoon. The fate of sludge-associated viruses was followed during detention of sludge in the lagoon and after application of sludge to land for disposal. While digested sludge was being added to the lagoon, enteroviruses were readily detected in grab samples of sludge from the lagoon. Sludge-associated viruses dropped to low or undetectable levels after disposal of sludge on land and during periods when addition of digested sludge to the lagoon was suspended. Changes in the levels of fecal coliforms in the lagooned sludge paralleled changes in the numbers of enteroviruses. Enteroviruses were not detected in water from deep wells located on the sludge disposal site or near the lagoon. During the initial part of the study, poliovirus serotypes accounted for greater than 90% of the viruses identified. Later, poliovirus serotypes comprised less than 40% of the virus isolates, and echoviruses and Coxsackieviruses were the most common enteroviruses identified.  相似文献   

8.
Organic Bulking Agents for Enhancing Oil Bioremediation in Soil   总被引:1,自引:0,他引:1  
Soil contaminated with oil is bioremediated by optimizing conditions for microbial activity. Often the question arises about the benefits of bulking with organic materials to improve soil conditions to enhance degradation of the less biodegradable or less bioavailable components. An investigation was undertaken in the laboratory with the objective of measuring the influence of bulking with dried plant material, bermudagrass, and alfalfa on the degradation of oily sludge added to soil. The oily sludge was diluted 50:50 on a weight basis with soil to achieve a final concentration of 100 g oil and grease kg-1 of final soil mixture. Bulking agents were added 40 d after dilution of the sludge and optimization of environmental conditions to allow time for the readily decomposable fraction to be degraded before amendment with bulking agents. Populations of heterotrophic microorganisms increased approximately ten times by 40 and 80 d after addition of bulking agents, but the numbers of hydrocarbon-degrading microorganisms did not significantly increase above the number in the nonbulked control. Bulking agents increased the quantity of total petroleum hydrocarbons degraded by approximately 20% during the first 40 d after being added. Disappearance of hydrocarbons for bulked treatments was much slower during the next 40 d, such that the total petroleum hydrocarbon content for both bulked and nonbulked treatments generally was not significantly different at the end. It appears that adding bulking agents may enhance the rate of decomposition of total petroleum hydrocarbons by stimulating the general heterotrophic population of microorganisms, but the influence may not be sustained to influence the extent of decomposition.  相似文献   

9.
Background, Aims and Scope Huge amounts of sewage sludge, that need to be handled, are generated all around the world from wastewater treatment plants and its management in an economically and environmentally acceptable way has become a matter of increasing importance during the last few years. In this paper, we make use of Life Cycle Assessment (LCA) to compare biological and thermal processes, that is to say, anaerobic digestion versus pyrolysis and incineration. This paper will complete the analysis performed in a wastewater treatment plant, where sludge post-treatment was identified as one of the main contributors to the environmental impact on the global system. Methods LCA is a tool for evaluating the environmental performance of goods as well as processes or services (collectively termed products). ISO 14040 defines LCA as a compilation and evaluation of the inputs, outputs and the potential environmental impacts of a system throughout its life cycle: from the production of raw materials to the disposal of the waste generated. In this study, data relating to the actual scenario from an existent wastewater treatment plant were considered. Both bibliographical and real data from existing facilities were used for the thermal processes proposed. The Centre of Environmental Science (CML) of Leiden University's methodology was chosen to quantify the potential environmental impacts associated with the different scenarios under study. The software SimaPro 5.1 was used and CML factors (updated in 2002) were chosen for characterisation and normalisation stages. Results and Discussion In a previous study, sewage sludge was found to be a critical point in the environmental performance of a wastewater treatment plant, so different alternatives have been tackled here. Anaerobic digestion followed by land application of pasty sludge comprises both energy recovery and nutrient recovery. Other thermal processes, such as incineration or pyrolysis, allow energy recovery (both electrical and thermal) and, although nutrients are lost, new co-products are produced (tar and char at pyrolysis). Here, the most adverse case (that is to say, the total amount of heavy metals is supposed to be released from the sludge and reach the environment) was applied to consider the most negative impact due to sludge spreading in agricultural soils; so more research is required in order to establish the precise amount of heavy metals that is effectively uptaken by the plants and crops as well as the amount that is transferred to another phase as a leachate. Thermal processes are presented here as a good option to recover energy from the sludge; although the value of nutrients is lost. Tar and char, co-products from pyrolysis, are good examples that were evaluated here, recycling of bottom ashes from sludge incineration or manufacture of ceramic materials from sludge are other options to be studied in the near future. Conclusion During the last few years, several opinions have been declared in favour of land application, incineration or pyrolysis, but many voices have also spoken out against each one. To obtain general conclusions for an overall comparison of different post-treatment of urban wastewater sludge is not easy as there are many contradictory aspects. The most effective utilisation of sewage sludge implies both energy and material re-use, but this is not always possible. Nevertheless, we think that land application of digested sludge is an acceptable option, probably not the best but at least a good one, for sludge treatment as long as efforts are focused on the minimisation of heavy metal content in the final cake.  相似文献   

10.
Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia   总被引:1,自引:1,他引:0  
We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur–aromatic compounds (31–55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.  相似文献   

11.
Studies of the land disposal of biosolids and municipal sewage have focused largely on the potential pollution of the soil with pathogens, toxic compounds or heavy metals. Little is known about the impact of sludge amendment on carbon source and sink concentrations in soils. In this study gas concentrations in Scottish soil cores (from limed and unlimed plots) were monitored continuously at 3 cm depth before, during and after sludge application using membrane inlet mass spectrometry (MIMS). Following sludge application to soil cores, significant and sustained increases in CH4 (for 8 days) and CO2 (for between 16 and 120 days) concentration were observed. This suggested short-term stimulation of indigenous methanogens, provision of a new methanogenic inoculum, or inhibition of methane oxidizers (for example by heavy metals or NH4 in sludge). Soil microbial fermentative activity was enhanced over periods of a few months as shown by elevated CO2 concentrations.  相似文献   

12.
An ex situ, field-scale, prepared bed land treatment unit (LTU) was used to bio-remediate soils containing petroleum hydrocarbons. Two soils were treated in side-by-side units to compare performance: (1) a clayey silt containing crude oil hydrocarbons from releases 30 to 40 years ago and (2) a silty sand containing diesel fuel hydrocarbons from a leak about three years prior to the bioremediation. The effectiveness of the bioremediation in the LTU was evaluated over a period of 18 months. The results indicated that: (1) prepared bed bioremediation reduced the hydrocarbon concentration, mobility, and relative toxicity in the soil with the diesel fuel, and (2) chemical bioavailability appeared to limit bioremediation of the soil containing the crude oil hydrocarbons. Although the soils containing the crude oil hydrocarbons contained an average of 10,000?mg TPH/kg dry soil, these soils had limited hydrocarbon availability, nontoxic conditions, and low potential for chemical migration. For the soils containing the diesel fuel, active prepared bed bioremediation of about 15 weeks was adequate to reach an environmentally acceptable endpoint. At that time, there was little further TPH loss, no MicrotoxTM toxicity, and limited hydrocarbon mobility.  相似文献   

13.
异养微生物在金属生物淋滤技术中的应用   总被引:4,自引:0,他引:4  
生物淋滤技术主要应用于低品位矿石金属选矿、煤气脱硫、废弃物中金属回收和污染介质中金属离子毒性的去除等方面。作为生物淋滤技术中的主体微生物之一,异养微生物可通过其产生的酸性代谢物还原、酸化及络合,提取或者溶解非硫化矿、固体废弃物、污水污泥及土壤中的金属,有助于解决目前的资源短缺问题,还可对污染环境治理提供技术支持,具有重要的理论意义和实践价值。应用于异养微生物淋滤技术中的常见微生物包括细菌(以假单胞菌为主)和真菌(以曲霉菌和青霉菌应用最为广泛)。淋滤过程涉及酸解、络合、还原及碱化等。目前,异养微生物淋滤技术主要应用于生物冶金、固体废弃物处理、污水处理和污染土壤修复等。本文分析了异养微生物金属淋滤过程中的问题,并提出了未来研究的发展方向。  相似文献   

14.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   

15.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

16.
AIMS: To quantify the incremental exposure of root crops, at point of harvest, to enteric pathogens from sewage sludge applied to agricultural land according to current regulations and guidance (Safe Sludge Matrix). METHODS AND RESULTS: A quantitative risk assessment based on the Source-Pathway-Receptor approach is developed for Cryptosporidium and salmonellas. Event trees are constructed to model the partitioning of pathogens present in raw sewage into sludge at the sewage treatment works and to model to the pathways by which root crops may be exposed to those pathogens after treatment and land application of the sludge. The main barriers are sewage sludge treatment, and decay and dilution of the pathogens in the soil. The exposures are expressed in terms of the arithmetic mean. This represents the total loading and accommodates fluctuations not only in the levels of pathogens present in sewage but also in the removal efficiencies by the various barriers. One source of uncertainty is the degree of by-pass of sludge treatment at operational scale. CONCLUSIONS: The models predict that land application of sewage sludge treated by conventional processes (achieving 2-log removal) increases the exposures of root crops to salmonellas and Cryptosporidium oocysts by counts of 0.070 and 0.033 kg(-1), respectively. These predictions are based on decay periods in the soil of 5 and 12 weeks, respectively, and are therefore worst case in not allowing for the full extent of no harvesting periods. A Monte Carlo simulation predicts that 0.01% of 1-kg batches contained > 50 salmonellas and demonstrates that, for risk assessment, it is acceptable to use the arithmetic mean exposure directly in the dose-response curve. SIGNIFICANCE AND IMPACT OF THE STUDY: The predicted numbers of pathogens on root crops at point of harvest provide a basis for modelling the excess risks to humans consuming such crops. The approach underpins scientifically the Safe Sludge Matrix.  相似文献   

17.
余杰  郑国砥  高定  刘洪涛  陈同斌 《生态学报》2012,32(7):2271-2278
分析了国内部分城市脱水污泥中几种主要有机污染物浓度,PAHs含量为1.156—34.940mg/kg,PCBs含量为0—115.730mg/kg;PCDD/Fs含量为9.530—22.900 ngTEQ/g干泥,NP含量为177.000mg/kg。提出要实现污泥安全、环保的土地利用,可采用生物好氧发酵技术降解污泥中的有机污染物,降低污泥在土地利用时有机污染物带来的环境风险。同时通过优化污泥生物好氧发酵控制条件:C/N值范围为25∶1—40∶1,温度在30—55℃,氧气浓度5%—15%,强制通风量控制在1.5—2.0m3.min-1.t-1(干泥)左右,pH6—9,混料含水率为50%—65%,经生物好氧发酵后的污泥施用土地,可以大大降低污泥在土地利用时的环境风险,避免污泥资源化利用带来的二次污染问题。  相似文献   

18.
14C-labeled benzo[a]pyrene (BaP) was used as a model-compound for polycyclic aromatic hydrocarbons (PAH) in order to assess the effect of photolytic pretreatment on the subsequent fate of BaP in sewage sludge and soil test systems. Photolysis was performed in methanolic solution with or without 0.1 M H2O2, under either UV light (300 nm) or natural sunlight. The presence of H2O2 greatly enhanced the rate of photolysis both with UV and with natural sunlight. Intact BaP resisted biodegradation in both test systems. Photolysis transformed BaP to polar materials that were subject to increased mineralization and binding in both biological test systems. As shown by the Ames assay, photolysis decreased the mutagenicity of BaP to test strains TA98 and TA104 only moderately. The photolysate had an increased acute toxicity and lost its need for activation by S-9 enzymes. However, during subsequent incubation in soil or sewage sludge, mutagenicity decreased rapidly by one to two orders of magnitude and acute toxicity disappeared due to the mineralization and binding of photoproducts to humic materials. Photolysis of BaP and similar PAH compounds represents a useful treatment option that could be applied to certain PAH-containing petroleum refinery sludge and to coal tar residues in order to facilitate their detoxification and environmentally safe disposal.  相似文献   

19.
城市污泥处理处置技术及资源化利用研究   总被引:17,自引:0,他引:17  
陈苏  孙丽娜  孙铁珩  晁雷 《生态科学》2006,25(4):375-378
城市污泥的产量巨大并且成分复杂,如何对城市污泥处置与利用已成为人们所关注的问题.污泥是有用的生物资源,如能合理利用则不仅能变废为宝,还能增加经济效益,所以,探讨适合我国国情的有效处理处置和利用污泥的技术具有重要的现实意义.本文对城市污泥的特性、国内外处理、处置技术和污泥资源化技术的现状进行了分析,认为对污泥进行资源化利用是符合我国国情的一种经济、有效的途径,污泥的资源化利用尤其是农业利用不但可以节省大量的污泥终端处置费用,更可以为肥力低下的农田增添有机质、提高肥力,促进农业生产发展、实现农业生态环境的良性循环.  相似文献   

20.
Photolysis primes biodegradation of benzo[a]pyrene.   总被引:2,自引:0,他引:2       下载免费PDF全文
14C-labeled benzo[a]pyrene (BaP) was used as a model-compound for polycyclic aromatic hydrocarbons (PAH) in order to assess the effect of photolytic pretreatment on the subsequent fate of BaP in sewage sludge and soil test systems. Photolysis was performed in methanolic solution with or without 0.1 M H2O2, under either UV light (300 nm) or natural sunlight. The presence of H2O2 greatly enhanced the rate of photolysis both with UV and with natural sunlight. Intact BaP resisted biodegradation in both test systems. Photolysis transformed BaP to polar materials that were subject to increased mineralization and binding in both biological test systems. As shown by the Ames assay, photolysis decreased the mutagenicity of BaP to test strains TA98 and TA104 only moderately. The photolysate had an increased acute toxicity and lost its need for activation by S-9 enzymes. However, during subsequent incubation in soil or sewage sludge, mutagenicity decreased rapidly by one to two orders of magnitude and acute toxicity disappeared due to the mineralization and binding of photoproducts to humic materials. Photolysis of BaP and similar PAH compounds represents a useful treatment option that could be applied to certain PAH-containing petroleum refinery sludge and to coal tar residues in order to facilitate their detoxification and environmentally safe disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号