首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhang  Rong-Rong  Wang  Ya-Hui  Li  Tong  Tan  Guo-Fei  Tao  Jian-Ping  Su  Xiao-Jun  Xu  Zhi-Sheng  Tian  Yong-Sheng  Xiong  Ai-Sheng 《Protoplasma》2021,258(2):379-390

Carotenoids are liposoluble pigments found in plant chromoplasts that are responsible for the yellow, orange, and red colors of carrot taproots. Drought is one of the main stress factors affecting carrot growth. Carotenoids play important roles in drought resistance in higher plants. In the present work, the carotenoid contents in three different-colored carrot cultivars, ‘Kurodagosun’ (orange), ‘Benhongjinshi’ (red), and ‘Qitouhuang’ (yellow), were determined by ultra-high-performance liquid chromatography (UPLC) after 15% polyethylene glycol (PEG) 6000 treatment. Real-time fluorescence quantitative PCR (RT-qPCR) was then used to determine the expression levels of carotenoid synthesis- and degradation-related genes. Increases in β-carotene content in ‘Qitouhuang’ taproots under drought stress were found to be related to the expression levels of DcPSY2 and DcLCYB. Increases in lutein and decreases in α-carotene content in ‘Qitouhuang’ and ‘Kurodagosun’ under PEG treatment may be related to the expression levels of DcCYP97A3, DcCHXE, and DcCHXB1. The expression levels of DcNCED1 and DcNCED2 in the three cultivars significantly increased, thus suggesting that NCED genes could respond to drought stress. Analysis of the growth status and carotenoid contents of carrots under PEG treatment indicated that the orange cultivar ‘Kurodagosun’ has better adaptability to drought stress than the other cultivars and that β-carotene and lutein may be involved in the stress resistance process of carrot.

  相似文献   

3.
Treatment of dark-grown barley with 0.1 mM fluridone inhibited carotenoid accumulation but did not alter plastid biogenesis. Plastids isolated from dark-grown control and dark-grown fluridone-treated plants were similar in size and protein compositions. Dehydration of dark-grown control barley caused abscisic acid levels to increase 30-40-fold in 4 h, while plants treated with 0.1 mM fluridone accumulated very little abscisic acid in response to dehydration. These results suggest that fluridone-treated plants do not accumulate abscisic acid because of carotenoid deficiency rather than plastid dysfunction. Dark-grown barley plants treated with 0.31 microM fluridone accumulated low levels of carotenoids. Dehydration of these plants resulted in a 4-8-fold increase in abscisic acid and a decrease in antheraxanthin, violaxanthin and neoxanthin, but no change in beta-carotene or lutein plus zeaxanthin levels. This result is consistent with the suggestion that xanthophylls are precursors to abscisic acid in dehydrated plants.  相似文献   

4.
5.
The rate of escape from red—far red reversibility for anthocyanin synthesis is lower in dark-grown than in light-pretreated seedlings of Brassica oleracea L. Red Acre, Secale cereale L. Cougar, and Lycopersicon esculentum Mill. Beefsteak. This observation is consistent with the suggestion that there might be two pools of phytochrome, a labile one, characterized by fast disappearance of phytochrome—far-red absorbing form, and a stable one, characterized by slow disappearance of phytochrome—far-red absorbing form, and that the proportion between the two pools might be different in dark-grown and light-pretreated seedlings.  相似文献   

6.
7.
The chloroplasts in dark-grown, 5-day-old seedlings of Piceaabies contained doubly stacked primary thylakoid membranes connectedwith prolamellar bodies. The photo-system II reaction centerand photosystem II-associated electron transfer were assembledin the primary thylakoid membranes, but the oxygen-evolvingsystem remained latent unless the seedlings were exposed tolight. The photoactivation of this system was strongly dependenton temperature during pre-illumination. This implies that somethermal process, in addition to the photoprocess, is involvedin the photoactivation of the oxygen-evolving system. 1Laboratory of Plant Physiology, The Institute of Physical andChemical Research, Wako-shi, Saitama 351, Japan. 2Department of Biology, Fukuoka Dental College, Fukuoka 814,Japan. (Received June 22, 1977; )  相似文献   

8.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

9.
Totipotency is the ability of a cell to regenerate the entire organism, even after previous differentiation as a specific cell. When totipotency is coupled with active cell division, it was presumed that cell division is essential for this expression. Here, using the stress-induction system of somatic embryos in carrots, we show that cell division is not essential for the expression of totipotency in somatic/embryonic conversion. Morphological and histochemical analyses showed that the cell did not divide during embryo induction. Inhibitors of cell division did not affect the rate of somatic embryo formation. Our results indicate that the newly acquired trait of differentiation appears without cell division, but does not arise with cell division as a newborn cell.  相似文献   

10.
11.
Differences in the extent of anthocyanin production between intermittent light treatments with short and long dark intervals between successive irradiations are more pronounced in dark-grown than in light-pretreated cabbage seedlings. This observation is consistent with the hypothesis, based on destruction kinetics data, that there might be two pools of phytochrome, a labile one and a stable one, present in different proportions in dark-grown and light-pretreated seedlings, and suggests that light-dependent changes of the stable to labile phytochrome ratio might be physiologically significant in the photoregulation of photomorphogenic responses.  相似文献   

12.
Datko AH  Mudd SH 《Plant physiology》1988,88(3):854-861
The methylation steps in the biosynthesis of phosphatidylcholine by tissue culture preparations of carrot (Daucus carota L.) and soybean (Glycine max), and by soybean leaf discs, have been studied. Preparations were incubated with tracer concentrations of l-[3H3C]methionine and the kinetics of appearance of radioactivity in phosphomethylethanolamine, phosphodimethylethanolamine, phosphocholine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, methylethanolamine, dimethylethanolamine, and choline followed at short incubation times. With soybean (tissue culture or leaves), an initial methylation utilizes phosphoethanolamine as substrate, forming phosphomethylethanolamine. The latter is converted to phosphatidylmethylethanolamine, which is successively methylated to phosphatidyldimethyethanolamine and to phosphatidylcholine. With carrot, again, an initial methylation is of phosphoethanolamine. Subsequent methylations occur at both the phospho-base and phosphatidyl-base levels. Both of these patterns differ qualitatively from that previously demonstrated in Lemna (SH Mudd, AH Datko 1986 Plant Physiol 82: 126-135) in which all three methylations occur at the phospho-base level. For soybean and carrot, some added contribution from initial methylation of phosphatidylethanolamine has not been excluded. These results, together with those from similar experiments carried out with water-stressed barley leaves (WD Hitz, D Rhodes, AD Hanson 1981 Plant Physiol 68: 814-822) and salinized sugarbeet leaves (AD Hanson, D Rhodes 1983 Plant Physiol 71: 692-700) suggest that in higher plants some, perhaps all, phosphatidylcholine synthesis occurs via a common committing step (conversion of phosphoethanolamine to phosphomethylethanolamine) followed by a methylation pattern which differs from plant to plant.  相似文献   

13.
We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.  相似文献   

14.
15.
16.
Sucrose suppression of chlorophyll synthesis in carrot callus cultures   总被引:2,自引:0,他引:2  
J. Edelman  A. D. Hanson 《Planta》1971,98(2):150-156
Summary Substrate levels of sucrose were shown to reduce chlorophyll synthesis in carrot tissue culture strain CRT1 but not in strain CRT2. In CRT1 the effect was shown to be a suppression of greening specifically by sucrose rather than a reducing sugar requirement for chlorophyll synthesis. In CRT1 sucrose caused both a reduction in chloroplast numbers per cell and a suppression of lamellar development in plastids. This effect on chloroplast structure was consistent with the observed reduced photosynthetic efficiency (micromoles CO2 per hour per mg chlorophyll) of CRT1 calluses grown on sucrose.  相似文献   

17.
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.  相似文献   

18.
Wang  Ya-Hui  Li  Tong  Zhang  Rong-Rong  Khadr  Ahmed  Tian  Yong-Sheng  Xu  Zhi-Sheng  Xiong  Ai-Sheng 《Protoplasma》2020,257(3):949-963
Protoplasma - Carotenoids are a group of natural pigments that are widely distributed in various plants. Carrots are plants rich in carotenoids and have fleshy roots with different colors....  相似文献   

19.
A light-stimulated increase in incorporation of radioactive amino acids into protein associated with protochlorophyllide holochrome occurs concomitantly with the regeneration of phototransformable protochlorophyllide in dark-grown barley leaves. This increase in radioactivity and the protochlorophyllide regeneration process are both abolished by incubation of the leaves with inhibitors of cytoplasmic protein synthesis. Prelimiary data implicate protein in the molecular weight range of 45,000–60,000 daltons in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号