首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ellipsometric measurements were used to monitor the formation of a bacterial cell film on polarized metal surfaces (Al-brass and Ti). Under cathodic polarization bacterial attachment was measured from changes in the ellipsometric angles. These were fitted to an effective medium model for a nonabsorbing bacterial film with an effective refractive index (nf) of 1.38 and a thickness (df) of 160 ± 10 nm. From the optical measurements a surface coverage of 17% was estimated, in agreement with direct microscopic observations. The influence of bacteria on the formation of oxide films was monitored by ellipsometry following the film growth in situ. A strong inhibition of metal oxide film formation was observed, which was assigned to the decrease in oxygen concentration due to the presence of bacteria. It is shown that the irreversible adhesion of bacteria to the surface can be monitored ellipsometrically. Electrophoretic mobility is proposed as one of the factors determining bacterial attachment. The high sensitivity of ellipsometry and its usefulness for the determination of growth of interfacial bacterial films is demonstrated.  相似文献   

2.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   

3.
Three-dimensional optical microscopy is often complicated by a refractive index mismatch between the sample and objective lens. This mismatch causes focal shift, a difference between sample motion and focal-plane motion, that hinders the accuracy of 3D reconstructions. We present two methods for measuring focal shift using fluorescent beads of different sizes and ring-stained fluorescent beads. These simple methods are applicable to most situations, including total internal reflection objectives and samples very close to the interface. For distances 0–1.5 μm into an aqueous environment, our 1.49-NA objective has a relative focal shift of 0.57 ± 0.02, significantly smaller than the simple n 2/n 1 approximation of 0.88. We also expand on a previous sub-critical angle theory by means of a simple polynomial extrapolation. We test the validity of this extrapolation by measuring the apparent focal shift in samples where the refractive index is between 1.33 and 1.45 and with objectives with numerical apertures between 1.25 and 1.49.  相似文献   

4.
An analysis is made of the distribution of deviations from Hardy-Weinberg proportions with k alleles and of estimates of inbreeding coefficients (f) obtained from these deviations.—If f is small, the best estimate of f in large samples is shown to be 2Σ i(Tii/Ni)/(k - 1), where Tii is an unbiased measure of the excess of the ith homozygote and Ni the number of the ith allele in the sample [frequency = Ni/(2N)]. No extra information is obtained from the Tij, where these are departures of numbers of heterozygotes from expectation. Alternatively, the best estimator can be computed from the Tij, ignoring the Tii. Also (1) the variance of the estimate of f equals 1/(N(k - 1)) when all individuals in the sample are unrelated, and the test for f = 0 with 1 d.f. is given by the ratio of the estimate to its standard error; (2) the variance is reduced if some alleles are rare; and (3) if the sample consists of full-sib families of size n, the variance is increased by a proportion (n - 1)/4 but is not increased by a half-sib relationship.—If f is not small, the structure of the population is of critical importance. (1) If the inbreeding is due to a proportion of inbred matings in an otherwise random-breeding population, f as determined from homozygote excess is the same for all genes and expressions are given for its sampling variance. (2) If the homozygote excess is due to population admixture, f is not the same for all genes. The above estimator is probably close to the best for all f values.  相似文献   

5.
The sensitivity of the wavelength position of localized surface plasmon resonance (LSPR) in metal nanostructures to local changes in the refractive index has been widely used for label-free detection strategies. Tuning the optical properties of the nanostructures from the visible to the infrared region is expected to have a drastic effect on the refractive index sensitivity. Here, we theoretically investigate the optical response of a newly designed plasmonic interface to changes in the bulk refractive index by the finite difference time domain method. It consists of a structured interface, where the planar interface is superposed with dielectric pillars 30 nm in height and 125 nm in length with a separation distance of 15 nm. The pillars are covered with U-shaped gold nanostructures of 50 nm in height, 125 nm in length, and 5 nm of gold base thickness. The whole structure is finally covered with a 5-nm thick dielectric layer of n 2?=?2.63. This plasmonic structure shows bulk refractive index sensitivities up to 1750 nm/RIU (RIU : refractive index unit) in the near infrared (λ?=?2621 nm). The enhanced sensitivity is a consequence of the extremely enhanced electrical field between the gold nanopillars of the plasmonic interface.  相似文献   

6.
Ion transport through monolayers and through several molecules of thick films at the mercury/water interface is discussed. The permeability of the monolayer is described by a rate constant, kc. The permeability of a thin but not monomolecular film is expressed as a function of the thickness of the film, the diffusion coefficient of the permeant in the film, and the distribution coefficient between the film and the bulk of the solution. The rate constant kc is expressed in terms of absolute rate processes. In the absence of specific interactions, the activation energy is composed of three terms: (a) electrostatic interaction between the permeating ion and the charged monolayer, (b) monolayer compression work of forming a hole for passage of the ions, and (c) energy of boundary line formation between the monolayer and the hole. The contribution of the third term is especially marked in condensed monolayers. Ions are bound weakly to the monolayers of the dipolar ion lecithin, which complicates the transport problem in this system. The retardation of oxygen reduction by the lecithin monolayer is of particular interest.  相似文献   

7.
We discuss the experimental data of surface plasmon resonance (SPR) occurring at the interface between air and single and bimetallic thin layers of Au and Ag prepared on glass substrates. The bilayer configuration allowed for the measurements of the optical constants of metallic films that are ultra thin; e.g., below 10 nm of thickness since SPR modes on such thin films in a single-layer configuration are shallow. We also discuss the effect of film thickness on SPR coupling. Thickness and refractive index of the films were determined by matching experimental SPR curves to the theoretical ones. Thickness and roughness of the films were also measured by atomic force microscopy. The results obtained by experimental measurements are in good agreement with AFM analysis.  相似文献   

8.
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.  相似文献   

9.
The fusion index (FI) is an index that can evaluate the tetanic progression of the skeletal muscles. Although the FI-frequency curve (FFC), which is obtained by changing the stimulation frequency, is greatly affected by muscle fiber type and fiber compositions, there are no reports of a mathematical equation that can express the FFC. In this study, the FFC was measured for the gastrocnemius, vastus intermedius, and soleus muscles of rats, and the mathematical equation (FFC-equation) was proposed. The FFC-equation (FI(f)) was proportional to the h-th power of f, and was in inverse proportion to the sum of the h-th power of k and the h-th power of f. f was the stimulation frequency, k was the stimulation frequency at 50% of FI, and h reflected the gradient of FFC. As a result, the approximated curve produced by the FFC-equation corresponded with the measured FFC. k reflected the fiber compositions and h represented the ratio of relaxation time to contraction time of the twitch contraction. The calcium ion fluctuation in muscle plasma may be described by the FFC-equation obtained from the experimental data.  相似文献   

10.
Laser light scattering has been used to investigate the thermal pretransition of dipalmitoylglycerophosphocholine vesicles with variable radius as obtained by the mild sonication method. Intensity changes in 90° scattered light are observed at the pretransition for larger vesicles and actually increase with increasing vesicle size, reaching a constant value.This constant value is in good agreement with the value calculated from the refractive index data.The intensity ratio of scattered light at temperatures of 30°C and 40°C (I40/I30) approaches unity at a radius of small single-bilayer vesicle. This result is interpreted as no pretransition for small vesicles in agreement with the calorimetric results. An expression of the particle scattering factor is also presented for multilayered shells composed of anisotropic elements. It is shown numerically, using this expression, that changes in the lipid layer thickness and the tilting angles at the pretransition have no effects on the scattering factor. Therefore it is concluded that the intensity changes in scattered light reflect the changes in the refractive index of the vesicle originating in the polar head groups.  相似文献   

11.
One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach.The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles.To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint.To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only.

Introduction

Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested.Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition (Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10.The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only.  相似文献   

12.
Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings. We have determined the refractive index of melanin by comparing the differently pigmented wing membranes and applying Jamin-Lebedeff interference microscopy. Together with the previously measured refractive index of chitin the blue, structural colour of the male wing veins could be quantitatively explained by an optical multilayer model. The obtained melanin refractive index data will be useful in optical studies on melanized tissues, especially where melanin is concentrated in layers, thus causing iridescence.  相似文献   

13.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

14.
Zhang Y  Sun G  Lü S  Li N  Long M 《Biophysical journal》2008,95(11):5439-5448
Forced dissociation of selectin-ligand bonds is crucial to such biological processes as leukocyte recruitment, thrombosis formation, and tumor metastasis. Although the bond rupture has been well known at high loading rate rf (≥102 pN/s), defined as the product of spring constant k and retract velocity v, how the low rf (<102 pN/s) or the low k regulates the bond dissociation remains unclear. Here an optical trap assay was used to quantify the bond rupture at rf ≤ 20 pN/s with low k (∼10−3-10−2 pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture force f retained the similar values when rf increased up to 20 pN/s. It was also found that f varied with different combinations of k and v even at the same rf. The most probable force, f*, was enhanced with the spring constant when k < 47.0 × 10−3 pN/nm, indicating that the bond dissociation at low rf was spring constant dependent and that bond rupture force depended on both the loading rate and the mechanical compliance of force transducer. These results provide new insights into understanding the P-selectin glycoprotein ligand 1 bond dissociation at low rf or k.  相似文献   

15.
Evert DR 《Plant physiology》1973,51(3):478-480
A sample holder was designed and built to facilitate measuring the magnitude and phase angle of the electrical impedance of internodal stem sections from Cornus stolonifera Michx. A nonpolarizing, electrically conducting manganese dioxidecarbon paste used between the stem sample and the electrodes of the sample holder allowed measurement of impedance at frequencies from 50 hertz to 500 kilohertz without electrode polarization or electrical interference. The impedance magnitude was linearly dependent on the sample length, but this dependence was minimized by computing a normalized impedance magnitude. The normalized impedance magnitude (Znf) was calculated using the impedance magnitude (Z) at any specified frequency (f) and the impedance magnitude at 500 kilohertz (Z500 khz) in the following formula: Znf = (Z - Z500 khz)/Z500 khz. The normalized impedance magnitude was sensitive to injury produced by boiling and peeling the sample. Electrical impedance measurements on the bark and wood separately demonstrated that they have different electrical properties.  相似文献   

16.
Theory and Simulation of Water Permeation in Aquaporin-1   总被引:6,自引:1,他引:5  
We discuss the difference between osmotic permeability pf and diffusion permeability pd of single-file water channels and demonstrate that the pf/pd ratio corresponds to the number of effective steps a water molecule needs to take to permeate a channel. While pd can be directly obtained from equilibrium molecular dynamics simulations, pf can be best determined from simulations in which a chemical potential difference of water has been established on the two sides of the channel. In light of this, we suggest a method to induce in molecular dynamics simulations a hydrostatic pressure difference across the membrane, from which pf can be measured. Simulations using this method are performed on aquaporin-1 channels in a lipid bilayer, resulting in a calculated pf of 7.1 × 10−14 cm3/s, which is in close agreement with observation. Using a previously determined pd value, we conclude that pf/pd for aquaporin-1 measures ~12. This number is explained in terms of channel architecture and conduction mechanism.  相似文献   

17.
《Biophysical journal》2020,118(10):2339-2348
Fluorescence detection, either involving propagating or near-field emission, is widely being used in spectroscopy, sensing, and microscopy. Total internal reflection fluorescence (TIRF) confines fluorescence excitation by an evanescent (near) field, and it is a popular contrast generator for surface-selective fluorescence assays. Its emission equivalent, supercritical angle fluorescence (SAF), is comparably less established, although it achieves a similar optical sectioning as TIRF does. SAF emerges when a fluorescing molecule is located very close to an interface and its near-field emission couples to the higher refractive index medium (n2 > n1) and becomes propagative. Then, most fluorescence is detectable on the side of the higher-index substrate, and a large fraction of this fluorescence is emitted into angles forbidden by Snell’s law. SAF, as well as the undercritical angle fluorescence (UAF; far-field emission) components, can be collected with microscope objectives having a high-enough detection aperture (numerical aperture > n2) and be separated in the back focal plane by Fourier filtering. The back focal plane image encodes information about the fluorophore radiation pattern, and it can be analyzed to yield precise information about the refractive index in which the emitters are embedded, their nanometric distance from the interface, and their orientation. A SAF microscope can retrieve this near-field information through wide-field optics in a spatially resolved manner, and this functionality can be added to an existing inverted microscope. Here, we describe the potential underpinning of SAF microscopy and spectroscopy, particularly in comparison with TIRF. We review the challenges and opportunities that SAF presents from a biophysical perspective, and we discuss areas in which we see potential.  相似文献   

18.
《Biorheology》1997,34(2):139-153
Wound healing is promoted by dressings that maintain a moist environment. Specifically, hydrocolloid dressings allow excess fluid to escape without permitting wound desiccation. However, the fluid handling capacity of hydrocolloid dressings depends on many factors such as the physicochemical properties of the gel formulation, and the design of the dressing. We measured the moisture uptake kinetics of different hydrocolloid dressings by placing the gel side of a sample in contact with water. The time evolution of the thickness was measured by means of a video camera linked to a computer. The theory of Tanaka and Fillmore 1979 was used to predict the kinetics of uniaxial swelling of a cylindrical gel sample. The model allows to associate to an experimental curve a total thickness increase hf — h0 (where hf and h0 are respectively the final and initial thickness) and a characteristic time τ. The model also relates hf — h0 and τ to the physicochemical composition of the dressing, and to the initial thickness h0. The influence of h0 is discussed by means of experiments performed on dressings with different initial thickness.  相似文献   

19.
The initial rates and steady-state values of proton uptake by broken chloroplasts have been measured as functions of light intensity at various concentrations of chlorophyll, pyocyanine, supporting electrolyte, buffer, as well as pH and temperature. Kinetic analysis of the data shows that the rate of decay of proton gradient due to backward leakage depends on light intensity. Under steady illumination, the decay constant kL is equal to kD + mR0, where R0 is the initial rate of proton uptake which is a function of light intensity, kD is the decay constant in the dark and m is a parameter which is independent of light intensity. Treatment of chloroplasts with lysolecithin, neutral detergent, 2,4-dinitrophenol, or valinomycin in the presence of K+ increases kD without affecting m. Treatment with N,N′-dicyclohexylcarbodiimide or adenylyl imidodiphosphate under appropriate conditions decreases m without affecting kD. Treatment with glutaraldehyde makes kL independent of light intensity and hence m = 0. These results suggest that the light-dependent part (mR0) of kL is due to leakage of protons through the coupling factor (CF1-CF0) complex which can open or close depending on light intensity and that the light-independent part (kD) of the decay constant kL is due to proton leakage elsewhere.  相似文献   

20.
基于功能性状的常绿阔叶植物防火性能评价   总被引:4,自引:0,他引:4  
植物功能性状不仅便于评价植物的防火性能,也有利于筛选防火植物。本研究以宁波地区的29个常绿木本植物为对象,在测定植物比叶面积、叶干物质含量、叶片含水量、枝条干物质含量和树皮厚度5个功能性状,以及鲜叶的7个防火性能指标的基础上,通过因子分析将防火性能指标划分为抗燃性fa(包含抗火性因子f1和燃烧速度因子f22个公因子)与燃烧性fb 2个防火因子,然后利用Pearson相关和偏相关建立了5个功能性状与各个防火因子的相关性,并对29物种的防火性能进行评价。结果表明:1)比叶面积和树皮厚度与抗火性因子f1,枝条干物质含量、树皮厚度和当年生叶片含水量与燃烧速度因子f2,比叶面积与抗燃性因子fa,叶片干物质含量、比叶面积和当年生叶片含水量与燃烧性因子fb间存在显著的相关关系;2)偏相关简化植物防火性状后,比叶面积和叶干物质含量分别对抗燃性因子fa与燃烧性因子fb的指示性最好;3)分别基于功能性状和燃烧试验的物种抗燃性排序相似度为0.80。本研究证明,基于简易观测的植物功能性状可较好地反映树种的抗火性和燃烧性,可作为植物防火性能有效的评价方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号