首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Protein phosphatase, active on non-histone phosphoprotein substrate, was partially purified from rat liver cell nuclei by means of salt extraction, ammoniumsulfate precipitation, DEAE cellulose chromatography, gel filtration and preparative isoelectrofocusing.Rat liver nuclei contain a heterogenous population of different protein phosphatases. All the enzyme fractions eluted from DEAE cellulose are of low molecular weight between 12,000–31,000. The pH 5.5 peak fraction of preparative isoelectrofocusing was characterized in detail. It has a pH optimum of 6.8 using nuclear phosphoprotein substrate. It is inhibited by Na+ at 80mm, and to a lesser extent by K+, activated by Mg2+(5mm) and Mn2+ (1mm). However, the latter is inhibitory at 6mm.The nuclear protein phosphatase is also active on labelled F1 and F2b histones and casein, however, its V is lower on histones and it contains component(s) active specifically on nuclear phosphoprotein substrate but not on casein.Abbreviations PP-ase protein phosphat Part of this work was presented at the XIth FEBS Meeting, Copenhagen 1977.  相似文献   

2.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

3.
A nonhistone protein component (NHPIns) firmly bound to DNA of rat kidney nuclei has been isolated and partially characterized. In vivo studies show that this protein specifically incorporates 35 to 45 times more 203Hg than any other nuclear protein fractions. No difference in the ratio of NHPIns to DNA between normal and mercury-poisoned rat kidney nuclei was observed. NHPIns protein gives a single major band by sodium dodecyl sulfate gel electrophoresis. Electrophoretic pattern as well as amino acid composition of this protein isolated from both normal and mercurypoisoned rats are also found to be similar. Cysteine content is 1.3 to 1.4 mole per cent.  相似文献   

4.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

5.
A homogeneous, tartrate-inhibitable acid phosphatase (AcPase) was obtained from the liver of channel catfish (Ictalurus punctatus) by the use of Affi Gel-10-coupled aminohexyltartramic acid affinity chromatography. The enzyme has a molecular weight of 82,500 and is a dimer consisting of two apparently equivalent subunits with subunit weights of 35,000 +/- 3000. Amino acid composition data are presented and compared with those of mammalian acid phosphatases. Data suggest that the enzyme is a metalloacid phosphatase. Catfish liver AcPase exhibits two molecular forms with pI 5.66 and 5.37 which were separated by chromatofocusing. A spontaneous conversion of the less acidic form to a more acidic form was observed and this conversion was accompanied by a decreased sensitivity towards tartrate inhibition.  相似文献   

6.
A procedure is described for the isolation of enzymatically active nuclei from chick embryo liver. It consists of the homogenization of the pooled tissue in 0.32 M sucrose-3 mM MgCl2 followed by a slow centrifugation. The resulting nuclear pellet is then purified further in a discontinuous density gradient composed of sucrose solutions containing Mg2+ ions, the lower portion of the gradient being 2.2 M sucrose-1 mM MgCl2. Based on DNA recovery, the nuclear fraction isolated by the procedure described contained an average of 62% of the nuclei in the original filtered homogenate. Light and electron microscope examinations showed that 90% of the isolated nuclei were derived from hepatocytes. They appeared intact with well preserved nucleoplasmic and nucleolar components, nuclear envelope, and pores. The isolated nuclei were quite pure, having a very low level of cytoplasmic contamination as indicated by cytoplasmic enzyme marker activities and electron microscope studies. The nuclear fraction consisted of 19.9% DNA, 6.2% RNA, 74% protein, the average RNA/DNA ratio being 0.32. Biosynthetic activities of the two nuclear enzymes NAD-pyrophosphorylase and DNA-dependent RNA polymerase were preserved. The specific activities of these enzymes were: NAD-pyrophosphorylase, 0.049 µmoles nicotinamide adenine dinucleotide (NAD) synthesized/min per mg protein; Mg2+ activated RNA polymerase, 4.3 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 10 min; and Mn2+-(NH4)2SO4 activated RNA-polymerase, 136 µµmoles UMP-2-C14 incorporated into RNA/µg DNA per 45 min.  相似文献   

7.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

8.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

9.
Guo YL  Roux SJ 《Plant physiology》1995,107(1):167-175
A pea (Pisum sativum L.) nuclear enzyme with protein tyrosine phosphatase activity has been partially purified and characterized. The enzyme has a molecular mass of 90 kD as judged by molecular sieve column chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Like animal protein tyrosine phosphatases it can be inhibited by low concentrations of molybdate and vanadate. It is also inhibited by heparin and spermine but not by either the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inhibitor okadaic acid. The enzyme does not require Ca2+, Mg2+, or Mn2+ for its activity but is stimulated by ethylenediaminetetraacetate and by ethyleneglycolbis(beta-aminoethyl ether)-N,N'-tetraacetic acid. It dephosphorylates phosphotyrosine residues on the four different 32P-tyrosine-labeled peptides tested but not the phosphoserine/threonine residues on casein and histone. Like some animal protein tyrosine phosphatases, it has a variable pH optimum depending on the substrate used: the optimum is 5.5 when the substrate is [32P]tyrosine-labeled lysozyme, but it is 7.0 when the substrate is [32P]tyrosine-labeled poly(glutamic acid, tyrosine). It has a Km of 4 microM when the lysozyme protein is used as a substrate.  相似文献   

10.
Several rat liver HMG-CoA-reductase (HMG-CoA-Rd) phosphatase activities have been shown to be associated with the endoplasmic reticulum. These activities were not due to glycogen contamination, as judged not only from different patterns of solubilization of the microsomal membranes and the glycogen pellet but also by differential centrifugation behavior under standard conditions and in a sucrose gradient. We present evidence that at least three forms of protein phosphatase are associated with microsomal membranes: a polycation-stimulated type 2A phosphatase, a type 2C phosphatase, and a non-2A, non-2B, non-2C phosphatase. This last HMG-CoA-Rd phosphatase activity corresponding to an 85 kDa protein was partially purified by several chromatographic procedures. The IC50 value for the inhibition of the HMG-CoA-Rd phosphatase by I-2 was 10-fold higher than for the inhibition of the purified type 1 catalytic subunit from rabbit skeletal muscle. The microsomal HMG-CoA-Rd phosphatase activity was slightly affected by the protein inhibitor that inhibits type 2A activity when HMG-CoA reductase is the substrate. The HMG-CoA-Rd phosphatase activity is spontaneously active and it is not reactivated in the presence of Mg2+ or polycations. The holoenzyme does not contain the inhibitor-2 and it is not reactivated by incubation with ATP and glycogen synthase kinase-3. Proteolytic treatment of the enzyme yielded a polypeptide fragment of low Mr (37 kDa) with reduced activity. A model of holoenzymatic HMG-CoA-Rd phosphatase and its relation to the microsomal membranes is presented.  相似文献   

11.
Isolation and characterization of a mannan-binding protein from rabbit liver   总被引:23,自引:0,他引:23  
A membrane protein which binds mannan has been isolated from rabbit liver by affinity chromatography. Upon polyacrylamide gel electrophoresis, a single major band was recovered with an estimated molecular weight of 31,000. When assayed as inhibitors, N-acetylmannosamine, N-acetylglucosamine, and mannose were potent inhibitors of mannan binding; N-acetylgalactosamine and mannose-6-phosphate were inert. Glycoproteins with terminal N-acetylglucosamine and/or mannose residues which are cleared rapidly from the circulation by the liver were the most potent inhibitors. On the basis of these results, it is proposed that the mannan-binding protein is the principle mediating the hepatic uptake of glycoproteins with terminal N-acetylglucosamine and/or mannose residues.  相似文献   

12.
Deteriosomes, a new class of microvesicles, have been isolated from rat liver tissue. These microvesicles are similar to those isolated previously from plant tissue [Yao et al., Proc Natl Acad Sci USA 88:2269–2273, 1991] in that they are nonsedimentable and enriched in membrane catabolites, particularly products of phospholipid degradation. Liver deteriosomes range in size from 0.05 μm to 0.11 μm in radius. They are also much more permeable than microsomal membrane vesicles indicating that the deteriosome bilayer is perturbed. The data are consistent with the proposal that deteriosomes are formed from membranes by microvesiculation and that they represent an intermediate stage of membrane deterioration. Furthermore, liver deteriosomes were found to contain phospholipase A2 activity. This suggests that they not only serve as a means of moving destabilizing macromolecular catabolites out of membranes into the cytosol but also possess enzymatic activity. The fact that the specific activity of phospholipase A2 is higher in deteriosomes than in deteriosome-free cytosol suggests that some of the enzymatic activity traditionally assumed to be cytosolic may in fact be associated with deteriosomes.  相似文献   

13.
A rat liver mannan-binding protein was isolated by affinity chromatography on invertase--Sepharose by a modification of the method of Kawasaki, Etoh & Yamashina [(1978) Biochem. Biophys. Res. Commun. 81, 1018-1024] and by a new method involving chromatography on mannose-Sepharose. The binding protein appears as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with an apparent mol.wt. of approx. 30000. Binding of 125I-labelled mannan is saturable and inhibited by mannose, N-acetylglucosamine, or L-fucose but not by galactose or mannose 6-phosphate. Neoglycoproteins containing mannose, N-acetylglucosamine, or L-fucose, but not galactose, are inhibitory. The neoglycoproteins are 10000-fold more effective (based on moles of sugar) than are free monosaccharides as inhibitors. 125I-labelled mannan binding to the binding protein is calcium-dependent.  相似文献   

14.
15.
Protein phosphatase T from rat liver, so termed due to its activity toward [32P-Thr]casein and its marked preference for the phosphopeptide Arg-Arg-Ala-Thr(P)-Val-Ala over its phosphoseryl derivative (Donella Deana, A., Marchiori, F., Meggio, F. and Pinna, L.A. (1982) J. Biol. Chem. 257, 8565-8568), is shown here to belong to the family of type 2A protein phosphatase according to Cohen's nomenclature (Ingebritsen, T.S. and Cohen, P. (1983) Eur. J. Biochem. 132, 255-261). In particular, protein phosphatase T is endowed with phosphorylase phosphatase activity that is stimulated by protamine, histone H1 and heparin, it is inhibited by spermine, it does not bind to heparin-Sepharose and it readily dephosphorylates the phosphopeptide Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser reproducing the phosphorylation site of the alpha-subunit of phosphorylase kinase. The Mr of protein phosphatase T determined by gel filtration under non-denaturating conditions is about 150 kDa and its activity ratio toward histone H1 phosphorylated by protein kinase C versus histone H1 phosphorylated by cAMP-dependent protein kinase is unusually high. Some properties of protein phosphatase T, such as its weak binding to DEAE-cellulose and its high stimulation by protamine as compared to a relatively poor stimulation by histone H1, suggest that it may be similar to subtype 2Ao of protein phosphatase 2A.  相似文献   

16.
A major endonuclease has been purified approximately 800-fold from rat liver nuclei using poly(A) as substrate. The enzyme had a molecular weight of about 50,000, and active fractions were obtained which contained no nucleic acid. Enzymatic activity was optimal between pH 6 and 7 and was totally dependent on the presence of a divalent cation. The reaction was inhibited by high ionic strength, polydextran sulfate, heparin, and sodium pyrophosphate. The purified enzyme readily hydrolyzed poly(A), poly(U), poly(C), and denatured DNA, whereas poly(G) was not degraded, and transfer RNA, ribosomal RNA, and native DNA were hydrolyzed only at relatively slow rates. These data suggest that the enzyme may be specific for single-stranded polynucleotides. The purified enzyme was essentially devoid of exonuclease activity, and the products of exhaustive endonuclease digestion of poly(A) were small oligonucleotides terminated with a 5'-phosphoryl group. Evidence was obtained that this endonuclease is localized in the nucleoplasm. Possible functions for this activity are discussed.  相似文献   

17.
An anionic glutathione S-transferase representing approximately 20% of the total glutathione S-transferase protein and 10% of the total transferase activity toward 1-chloro 2,4-dinitrobenzene has been purified to homogeneity from the 105,000 x g supernatant of rat liver homogenate. The SDS gel electrophoretic data on subunit composition revealed that the anionic isozyme is composed of two subunits with an identical Mr of 26,000. The Km values for 1-chloro 2,4-dinitrobenzene and reduced glutathione were determined to be 0.94 mM and 0.23 mM respectively. A significant amount of glutathione peroxidase activity toward cumene hydroperoxide is associated with the new isozyme.  相似文献   

18.
19.
The proteinase previously found in chromatin prepared from a total rat liver homogenate was purified from the rat liver mitochondrial fraction. The membrane-bound enzyme is solubilized in either 0.6% digitonin or 0.5 m phosphate buffer. After a 1330-fold purification, the enzyme appears homogeneous by acrylamide-gel electrophoresis. Sucrose density gradient centrifugation indicated a molecular weight of 22,500, a molecular weight of 23,500 ± 10% has been estimated by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme showed a high substrate specificity. Among several proteins tested, only glucagon, nonhistone chromosomal proteins, and histones are good substrates. A limited proteolysis was found for the very-lysine-rich histone H1, which was split into a high molecular weight fragment (Mr 13,000). The highly phosphorylated histone H1 isolated from regenerating rat liver 24 h after partial hepatectomy exhibited the same susceptibility to the proteinase as H1 from normal liver. Large polypeptides of a nonhistone chromosomal protein fraction were degraded more rapidly than the small ones. N-Acetyl-l-tyrosine ethyl ester was used with alcohol dehydrogenase and NAD in a coupled enzyme assay for the proteinase. The apparent Michaelis constant for the hydrolysis of N-acetyl-l-tyrosine ethyl ester is 5.0 × 10?3m. The proteinase has catalytic properties simlar to trypsin and chymotrypsin. The pH optimum was around 8, soybean trypsin inhibitor depressed the enzymatic activity, and the serine modifying reagents diisopropyl phosphofluoridate and phenylmethanesulfonyl fluoride inactivated the enzyme. The affinity reagent for chymotrypsin-like active sites, l-1-tosylamido-2-phenylethyl chloromethyl ketone, inactivated the proteinase.  相似文献   

20.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号