首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of guanylate cyclase to addition of extracellular stimuli is well documented. Here we report for the first time the response of guanylate cyclase to removal of stimuli. Three methods were employed to terminate rapidly a stimulus of folic acid. (1) Addition of a highly active folate deaminase preparation, or (2) 12-fold dilution of the stimulated cell suspension, or (3) addition of an excess concentration of a non-agonistic derivative of folic acid, i.e., 2-deaminofolic acid, which chases the folate agonist from its cell-surface receptors. Accumulation of cGMP terminated instantaneously upon addition of deaminase, but degradation of the synthesized cGMP was not observed until 10–12 s after stimulation. Also in a cGMP phosphodiesterase-lacking ‘streamer’ mutant an instantaneous termination of further cGMP accumulation was observed upon stimulus removal. This suggests that the termination of cGMP accumulation is due to inactivation of guanylate cyclase instead of a steady state of cGMP synthesis and degradation. Further accumulation of cGMP was approx. 75% reduced upon dilution of a cell suspension after stimulation with both agonists. Stimulation by 300 nM folic acid or by 30 nM N10-methylfolic acid (a more potent agonist) yielded identical results. However, upon addition of deaminofolic acid the accumulation of cGMP continued normally if the cells had been stimulated with N10-methylfolic acid, but only slightly in the case of a folic acid stimulus. The effect of stimulus duration on desensitization was monitored; it was observed that 50% desensitization was induced by stimulation for 1 s, while 4 s was sufficient for maximal desensitization. Short stimuli were observed to elicit high levels of desensitization without much excitation of guanylate cyclase. A desensitization-like process was observed at the level of the folate-binding chemotactic receptors as well. Relationships between the cGMP response data and folic acid receptor kinetics are discussed.  相似文献   

2.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

3.
We investigated the cloning, catalytic activity and anion inhibition of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Legionella pneumophila. Two such enzymes, lpCA1 and lpCA2, were found in the genome of this pathogen. These enzymes were determined to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated to identify inhibitors of these enzymes. Perchlorate and tetrafluoroborate were not acting as inhibitors (KI >200 mM), whereas sulfate was a very weak inhibitor for both lpCA1 and lpCA2 (KI values of 77.9–96.5 mM). The most potent lpCA1 inhibitors were cyanide, azide, hydrogen sulfide, diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging from 6 to 94 μM. The most potent lpCA2 inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KI values ranging from 2 to 13 μM. As these enzymes seem to be involved in regulation of phagosome pH during Legionella infection, inhibition of these targets may lead to antibacterial agents with a novel mechanism of action.  相似文献   

4.
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0 × 105 s−1 and a kcat/Km of 4.7 × 106 M−1 × s−1. This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502 nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4–4.4 mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58 mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38 μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.  相似文献   

5.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

6.
Tissue kallikrein may play a role in processing precursor polypeptide hormones. We investigated whether hydrolysis of natural enkephalin precursors, peptide F and bovine adrenal medulla docosapeptide (BAM-22P), by hog pancreatic kallikrein is consistent with this concept. Incubation of peptide F with this tissue kallikrein resulted in the release of Met5-enkephalin and Met5-Lys6-enkephalin. Met5-Lys6-enkephalin was the main peptide released, indicating that the major cleavage site was between two lysine residues. At 37°C and pH 8.5, the KM values for formation of Met5-enkephalin and Met5-Lys6-enkephalin were 129 and 191 μM, respectively. Corresponding kcat values were 0.001 and 0.03 s−1 and kcat/KM ratios were 8 and 1.6·102 M−1 · s−1, respectively. Cleavage of peptide F at acidic pH (5.5) was negligible. When BAM-22P was used as a substrate, Met5-Arg6-enkephalin was released, thus indicating cleavage between two arginine residues. At pH 8.5, KM was 64 μM, kcat was 4.5 s−1, and the kcat/KM ratio was 7 · 104 M−1 · s−1. At 5.5, the pH of the secretory granules, KM, kcat and kcat/KM were 184 μM, 1.9 s−1 and 104 M−1 · s−1, respectively. It is unlikely that peptide F could be a substrate for kallikrein in vivo; however, tissue kallikrein could aid in processing proenkephalin precursors such as BAM-22P by cleaving Arg-Arg peptide bonds.  相似文献   

7.
We investigated the catalytic activity and inhibition of the δ-class carbonic anhydrase (CA, EC 4.2.1.1) from the marine diatom Thalassiosira weissflogii, TweCA. The enzyme, obtained by cloning the synthetic gene, was an efficient catalyst for the CO2 hydration, its physiological reaction, with a kcat of 1.3 × 105 s−1 and a kcat/KM of 3.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of TweCA. Chloride and sulfate did not inhibit the enzyme (KIs >200 mM) whereas other halides and pseudohalides were submillimolar–millimolar inhibitors (KIs in the range of 0.93–8.3 mM). The best TweCA inhibitors were hydrogen sulfide, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 9–90 μM, whereas acetazolamide inhibited the enzyme with a KI of 83 nM. This is the first kinetic and inhibition study of a δ-class CA. However, these enzymes are widespread in the marine phytoplankton, being present in haptophytes, dinoflagellates, diatoms, and chlorophytic prasinophytes, contributing to the CO2 fixation by sea organisms. A phylogenetic analysis with all five genetic families of CAs showed that α- and δ-CAs are evolutionarily more related to each other with respect to the γ-CAs, although these three families clustered all together. On the contrary, the β- and ζ-CAs are also related to each other but phylogenetically much more distant from the α-, γ and δ-CA cluster. Thus, the study of δ-CAs is essential for better understanding this superfamily of metalloenzymes and their potential biotechnological applications in biomimetic CO2 capture processes, as these enzymes are part of the carbon concentrating mechanism used by many photosynthetic organisms.  相似文献   

8.
9.
This report addresses the functional role of His residues in the proton-coupled folate transporter (PCFT; SLC46A1), which mediates intestinal folate absorption. Of ten His residues, only H247A and H281A mutations altered function. The folic acid influx Kt at pH 5.5 for H247A was ↓8.4-fold. Although wild type (WT)-PCFT Ki values varied among the folates, Ki values were much lower and comparable for H247-A, -R, -Q, or -E mutants. Homology modeling localized His247 to the large loop separating transmembrane domains 6 and 7 at the cytoplasmic entrance of the translocation pathway in hydrogen-bond distance to Ser172. The folic acid influx Kt for S172A-PCFT was decreased similar to H247A. His281 faces the extracellular region in the seventh transmembrane domain. H281A-PCFT results in loss-of-function due to ∼12-fold↑ in the folic acid influx Kt. When the pH was decreased from 5.5 to 4.5, the WT-PCFT folic acid influx Kt was unchanged, but the Kt decreased 4-fold for H281A. In electrophysiological studies in Xenopus oocytes, both WT-PCFT- and H281A-PCFT-mediated folic acid uptake produced current and acidification, and both exhibited a low level of folate-independent proton transport (slippage). Slippage was markedly increased for the H247A-PCFT mutant. The data suggest that disruption of the His247 to Ser172 interaction results in a PCFT conformational alteration causing a loss of selectivity, increased substrate access to a high affinity binding pocket, and proton transport in the absence of a folate gradient. The His281 residue is not essential for proton coupling but plays an important role in PCFT protonation, which, in turn, augments folate binding to the carrier.  相似文献   

10.
  1. In silicic acid-starved cells of the diatom Nitzschia alba, 68Ge(OH)4 is transported against a concentration gradient, leading to intracellular concentrations of germanic acid up to 3500 times greater than the exogenous concentrations. The accumulated substrate is osmotically active, as determined by its efflux into germanic acid-free medium.
  2. Metabolic energy is required for Ge(OH)4 transport, since uptake is completely inhibited by 1 mM DNP, 5×10-2 M sodium azide or 1 mM iodacetamide, and is strongly inhibited by CCCP and antimycin A. Inhibition of protein synthesis with 20 μg/ml cycloheximide does not affect the initial velocity of transport, but strongly reduces the steady state intracellular concentration.
  3. A double reciprocal plot of uptake velocity versus substrate concentration yields a biphasic curve. The kinetic data are consistent with the interpretation that N. alba has two transport systems for germanic acid; a high affinity-low capacity (K s=0.36 μM; V max 1.2 μmoles/108 cells/min) system and a low affinity-high capacity (K s=5 μM; V max 6.2 μmoles/108 cells/min) system.
  4. The implications of these findings for silicic acid transport and metabolism in N. alba are discussed.
  相似文献   

11.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

12.
The 16 sulfhydryl groups of native, homogeneous rabbit muscle fructose diphosphatase can all react with 5,5′-dithiobis-(2-nitrobenzoic acid). High concentrations of substrate (1–2 mm) decrease the reaction rate of the sulfhydryl groups, while concentrations up to 70 μm have no effect. After titration of the four most rapidly reacting sulfhydryl groups there is a marked desensitization toward the allosteric inhibitor AMP. In the presence of 30 μm AMP only 4–5 sulfhydryl groups/tetramer react with 5,5′-dithiobis-(2-nitrobenzoic acid), and the enzyme again becomes desensitized toward AMP inhibition. Together with a 3.5-fold increase in the I50 for AMP inhibition, the Km for Mg2+ or Mn2+ ions is also increased. In the presence of 7 mm MgCl2 or 0.28 mm MnCl2 only 6–8 sulfhydryl groups are modified. The rapid reaction of 4 sulfhydryl groups again results in desensitization. There is neither a protection by the substrate against inactivation, nor a protection by the allosteric inhibitor against desensitization. It is concluded that AMP and the divalent cations induce conformational changes in the protein molecule making 11–12 or 8–10 sulfhydryl groups inert for 5,5′-dithiobis-(2-nitrobenzoic acid), respectively. The Km for fructose-1,6-diphosphate is not changed after the modification of 4–5 sulfhydryl groups.  相似文献   

13.
Thein vitro uptake of 5-methyltetrahydrofolate (5-MeTHF) by rat and human intestine is dose-dependently inhibited by the antidepressant drug fluoxetine (FLX). In rat jejunum rings, 0.2 mM FLX inhibited the uptake of 5-MeTHF (0.25 μM) by 32% (15 min) and 49% (45 min). In brush border membrane vesicles (BBMV) from rat jejunum, 0.2 mM FLX inhibited the folate uptake at the overshoot (90 s) by 40 %. Similar inhibition was observed with human Caco-2 cells and duodenal biopsies. FLX action is exerted on the active transport component of the folate uptake, since the drug has no effect when the passive diffusion component becomes prominent by high substrate concentration, or by 0-4 ºC incubation or by addition of the folate transport inhibitor DIDS (1mM). The kinetic analysis with rat BBMV suggests a non-competitive inhibition of the 5-MeTHF transport by FLX, with apparent values for KM = 0.89 μM, Vmax = 1.89 pmol/mg prot./10 s, and KI = 0.21 mM. After 21 days of treatment with FLX (10 mg/kg/day), the folate uptake by jejunum rings or by BBMV from the treated rats was diminished, and the folate levels in erythrocytes and serum were also decreased.  相似文献   

14.
《FEBS letters》1997,407(1):69-72
Hydroxyquinol 1,2-dioxygenase, an intradiol dioxygenase, which catalyzes the cleaving of the aromatic ring of hydroxyquinol, a key intermediate of 2,4-D and 2,4,5-T degradation, was purified from Nocardioides simplex 3E cells grown on 2,4-D as the sole carbon source. This enzyme exhibits a highly restricted substrate specificity and is able to cleave hydroxyquinol (Km for hydroxyquinol as a substrate was 1.2 μM, Vmax 55 U/mg, Kcat 57 s−1 and Kcat/Km 47.5 μM s−1), 6-chloro- and 5-chlorohydroxyquinol. Different substituted catechols and hydroquinones are not substrates for this enzyme. This enzyme appears to be a dimer with two identical 37-kDa subunits. Protein and iron analyses indicate an iron stoichiometry of 1 iron/65 kDa homodimer, α2 Fe. Both the electronic absorption spectrum which shows a broad absorption band with a maximum at 450 nm and the electron paramagnetic resonance spectra are consistent with a high-spin iron(III) ion in a rhombic environment typical of the active site of intradiol cleaving enzymes.  相似文献   

15.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

16.
Uptake of folic acid was measured in secondary cultures of skin fibroblasts from fetal rats. The cultures were made quiescent by 24 hours preincubation in medium containing 1% serum and subsequent 3 hours preincubation in phosphate buffered saline. The uptake of 3H-folic acid was linear with time during 15 seconds and reached a plateau level at 2–3 minutes. There was no further increase in the intracellular radioactivity until the end of the experiments at 10 minutes. The uptake of folic acid in fibroblasts was not concentrative and proceeded until equilibration with the extracellular concentration. Intracellular metabolic conversion of folic acid was not significant during the time of the experiments (up to 10 minutes). Insulin caused a two-fold increase in the initial rate of folate uptake as determined from the 15 second uptake values. The dose response curves for the insulin effect showed that 85% of the maximal effect was exerted by 1 m?M insulin. A lag period of 7–10 minutes was observed after the addition of insulin and before the effect on folic acid uptake was manifested. Thereafter the effect increased with the time of preincubation with insulin. The concentration dependence of folate uptake yielded non homogeneous curves. At low concentrations of substrate, saturable components were observed while at high concentration (above 5 × 10?6 M) a linear component was observed. Insulin increased the slope of the linear component and the Vmax of the saturable component while the Km remained unaltered.  相似文献   

17.
The effects of media vitamin B12(CNB12), l-methionine, folic acid, dl-5-methyltetrahydrofolate (5-MeH4folate), homocysteine, and other nutrients on four one-carbon enzymes in cultured Chinese hamster ovary (CHO) cells were examined. Excess 10 mm methionine elevates the amount of B12 methyltransferase 1.8 – 2.3-fold at media folate concentrations of 0.2 – 2.0 μm. Conversely, excess 100 μm folic acid increases the amount of B12 holoenzyme by 2.4 – 3.0-fold when the medium contains 0.01 – 0.1 mm methionine. These increases in B12 methyltransferase promoted by 100 μm media folate and 10 mm methionine are inhibited by cycloheximide. 5-MeH4folate will support growth and induce methyltransferase synthesis more efficiently than folic acid.Upon transfer to methionine-free media, wild-type CHO cells will survive and can be repeatedly subcultured in the absence of exogenous methionine, provided it is supplemented with 1.0 μm CNB12, 0.1 mm homocysteine, and 100 μm folic acid or 10 μm dl-5-MeH4folate. No growth occurs if homocysteine is omitted, but a requirement for added CNB12 does not become evident until the cells have undergone at least two or three divisions. Survival upon transfer from 0.1 mm methionine-containing to methionine-free media is dependent upon the B12 holomethyltransferase content of the cells used as an inoculum. Inoculum cells must have been previously grown in media supplemented with 1.0 μm CNB12 to stabilize and convert apo- to holomethyltransferase, and 100 μm folate (or 10 μm dl-5-MeH4folate) to induce maximal enzyme-protein synthesis. Transfer to methionine-deficient medium does not result in more than a 20–25% increase in the cellular B12 enzyme content over the level already induced by 100 μm folate in 0.1 mm methionine-supplemented media. A mutant auxotroph CHO AUXB1 with a triple growth requirement for glycine + adenosine + thymidine (McBurney, M. W., and Whitmore, G. F. (1974) Cell, 2, 173) cannot survive in media lacking exogenous methionine. High concentrations of media folic acid or dl-5-MeH4folate fail to induce elevated amounts of B12 methyltransferase in this mutant. Excess 10 mm medium methionine does, however, elevate its B12 enzyme as in the parent CHO cells. An additional mutant AUXB3 that requires glycine + adenosine (McBurney, M. W., and Whitmore, G. F. (1974) Cell, 2, 173) barely survives in methionine-deficient media. It has a folate-induced B12 enzyme level intermediate between wild-type CHO cells and AUXB1. The level of B12 methyltransferase induced by high media folate concentrations is a critical determinant of CHO cell survival in methionine-free media.  相似文献   

18.
To determine if calcium-dependent secretagogues directly act on epithelial cells to elicit CI secretion, their effects on CI transport and intracellular Ca2+ concentrations ([Ca2+]i) were determined in primary cultures of rabbit distal colonic crypt cells. The Cl sensitive fluorescent probe, 6-methoxyquinolyl acetoethyl ester, MQAE and the Ca2+-sensitive fluorescent probe, fura-2AM were used to assess Cl transport and [Ca2+]i, respectively. Basal Cl transport (0.274 ± 0.09 mM/sec) was inhibited significantly by the Cl channel blocker diphenylamine-2-carboxylate (DPC, 50 μM, 0.068 ± 0.02 mM/sec; P < 0.001) and the Na+/K+/2Cl cotransport inhibitor furosemide (1 μM, 0.137 ± 0.04 mM/sec; P < 0.01). Ion substitution studies using different halides revealed the basal influx to be I > F ≥ Cl > Br. DPC inhibited I influx by ∼50%, F influx by 80%, Cl influx by 85%, and Br influx by 90%. Furosemide significantly inhibited influx of Br (84%) and Cl (81%) but not of F and I. The effects of agents known to alter biological response by increasing [Ca2+]i in other epithelial systems were used to stimulate Cl transport. Cl influx in mM/second was stimulated by 1 μM histamine (0.58 ± 0.05), 10 μM neurotensin (2.07 ± 0.32), 1 μM serotonin (1.63 ± 0.28), and 0.1 μM of the Ca2+ ionophore A23187 (2.05 ± 0.40). The Cl permeability stimulated by neurotensin, serotonin, and A23187 was partially blocked by DPC or furosemide added alone or in combination. Histamine-induced Cl influx was significantly inhibited by only furosemide. Indomethacin blocked histamine-stimulated Cl permeability but had no effect on the actions of the other agents. These studies, focusing on isolated colonocytes without the contribution of submucosal elements, reveal that (1) histamine stimulates Cl transport by activating the Na+/K+/2Cl cotransporter via a cyclooxygenase-dependent pathway; (2) neurotensin, serotonin, and A23187 activate both Cl channels and the cotransporter, and their actions are cyclooxygenase-independent. © 1996 Wiley-Liss, Inc.  相似文献   

19.
In calcium-free saline, voltage-clamped ventral longitudinal muscles of housefly larvae have maintained (IK) and transient (IA) voltage-dependent K+ currents. With 500 ms conditioning pulses, inactivation of IA had a midpoint at ?53 mV and changed e-fold in 3.46 mV. IA inactivated completely at ?40 mV, with a time constant of 71 ms, allowing the effects of various K+ channel blockers to be studied on IK in isolation. RH-5849 (1,2-dibenzoyl-1-tert-butylhydrazine), a novel insect growth regulator, induces a lethal premature molt in insect larvae by mimicking the action of the molting hormone at ecdysone receptors. RH-5849 also causes acute neurotoxicity in some insects by selectively blocking of IK in nerve and muscle. While most channel blockers have a Hill coefficient near 1, consistent with a simple one molecule per channel block mechanism, RH-5849 and the analog RH-1266 were found in the present study to block IK channels in insect muscle with a Hill coefficient of 1.5. The lC50 (concentration that caused 50% block) for block of IK was 59 μM for RH-5849 and 40 μM for RH-1266. While tetraethylammonium blocked IK by only 20% at 100 mM, 4-aminopyridine blocked the current with an lC50 of 1.2 mM and a Hill coefficient of 0.97. Quinidine was the most potent blocker of IK in this study, with an lC50 of 20 μM. Block of IK by either RH-5849 or 4-aminopyridine was independent of test pulse potential, but block by quinidine increased with depolarization. Block of IK by RH-5849 and quinidine was time dependent, suggesting an open channel block mechanism, but the time course was too fast relative to channel activation for kinetic analysis. The lC50 for block of IK by RH-5849 decreased with temperature, with a Q10 of 0.52. IA was also blocked by RH-5849, but was less sensitive than IK. The lC50 for block of IA by RH-5849 was 775 μM, 13-fold higher than the lC50 for block of IK. © 1992 Wiley-Liss, Inc.  相似文献   

20.
The enzymatic production of α-dehydrobiotin (α-DHB), an antibiotic, from biotinyl-CoA using acyl-CoA oxidase and from biotin using a coupling system of biotinyl-CoA synthetase and acyl-CoA oxidase was developed. Acyl-CoA oxidase was found to show activity for biotinyl-CoA. Km and Vmax values of acyl-CoA oxidase for biotinyl-CoA were 75 μM and 3.92 μmol min−1 mg−1, respectively. Optimum reaction conditions for the α-DHB production from biotin were examined. The maximum production of α-DHB (4.29 μmol ml−1) was obtained, when the reaction was carried out at 30°C for 36 h in a mixture consisting of 100 mM potassium phosphate buffer (pH 8.0), 20 mM biotin, 20 mM ATP, 60 mM CoA, 20 mM MgCl2, 2 units of biotinyl-CoA synthetase, 90 units of acyl-CoA oxidase and 25 units of catalase in a total volume of 0.6 ml under aerobic conditions. The product was purified from 14 ml of the reaction mixture and 10 mg of crystals with white needle form were obtained. From NMR, mass spectra and other physical analyses, this compound was identified as (+)-trans-α-DHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号