首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth.  相似文献   

2.
Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.  相似文献   

3.
Evolution and isoform specificity of plant 14-3-3 proteins   总被引:1,自引:0,他引:1  
The 14-3-3 proteins, once thought of as obscure mammalian brain proteins, are fast becoming recognized as major regulators of plant primary metabolism and of other cellular processes. Their presence as large gene families in plants underscores their essential role in plant physiology. We have examined the Arabidopsis thaliana 14-3-3 gene family, which currently is the largest and most complete 14-3-3 family with at least 12 expressed members and 15 genes from the now completed Arabidopsis thaliana genome project. The phylogenetic branching of this family serves as the prototypical model for comparison with other large plant 14-3-3 families and as such may serve to rationalize clustering in a biological context. Equally important for ascribing common functions for the various 14-3-3 isoforms is determining an isoform-specific correlation with localization and target partnering. A summary of localization information available in the literature is presented. In an effort to identify specific 14-3-3 isoform location and participation in cellular processes, we have produced a panel of isoform-specific antibodies to Arabidopsis thaliana 14-3-3s and present initial immunolocalization studies that suggest biologically relevant, discriminative partnering of 14-3-3 isoforms.  相似文献   

4.
N-Glycosylation is essential for protein stability, activity and characteristics, and is often needed to deliver pharmaceutical glycoproteins to target cells. A paucimannosidic structure, Man3GlcNAc2 (M3), has been reported to enable cellular uptake of glycoproteins through the mannose receptor (MR) in humans, and such uptake has been exploited for the treatment of certain diseases. However, M3 is generally produced at a very low level in plants. In this study, a cell culture was established from an Arabidopsis alg3 mutant plant lacking asparagine-linked glycosylation 3 (ALG3) enzyme activity. Arabidopsis alg3 cell culture produced glycoproteins with predominantly M3 and GlcNAc-terminal structures, while the amount of plant-specific N-glycans was very low. Pharmaceutical glycoproteins with these characteristics would be valuable for cellular delivery through the MR, and safe for human therapy.  相似文献   

5.
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific “omics” data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.  相似文献   

6.
Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.

Three-dimensional image reconstruction visualized the spatial organization of cell types in the haustoria of the Orobanchaceae parasitic plants Striga hermonthica and Phtheirospermum japonicum.  相似文献   

7.
8.
In most species of the GenliseaUtricularia sister lineage, the organs arising directly after germination comprise a single leaf-like structure, followed by a bladder-trap/stolon, with the lack of an embryonic primary root considered a synapomorphic character. Previous anatomical work suggests that the most common recent ancestor of Utricularia possessed an embryo comprising storage tissue and a meristematic apical region minus lateral organs. Studies of embryogenesis across the Utricularia lineage suggest that multiple primary organs have only evolved in the viviparous Utricularia nelumbifolia, Utricularia reniformis, and Utricularia humboldtii within the derived Iperua/Orchidioides clade. All three of these species are specialized for growth as “aquatic epiphytes” in the tanks of bromeliads, with recent phylogenetic evidence suggesting the possibility that multiple primary organs may have evolved twice independently within this clade. The primary organs of viviparous Utricularia also possess epidermal surface glands, and our study suggests that these may function as root hairs for uptake of solutes from the external environment—a possible adaptation for the “aquatic–epiphytic” habitat.  相似文献   

9.
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.

A review of the cell biological and developmental mechanisms of bryophytes, including Physcomitrium patens and Marchantia polymorpha.  相似文献   

10.

Background  

Pectate lyases depolymerize pectins by catalyzing the eliminative cleavage of α-1,4-linked galacturonic acid. Pectate lyase-like (PLL) genes make up among the largest and most complex families in plants, but their cellular and organismal roles have not been well characterized, and the activity of these genes has been assessed only at the level of entire organs or plant parts, potentially obscuring important sub-organ or cell-type-specific activities. As a first step to understand the potential functional diversity of PLL genes in plants and specificity of individual genes, we utilized a reporter gene approach to document the spatial and temporal promoter activity for 23 of the 26 members of the Arabidopsis thaliana (Arabidopsis) PLL gene family throughout development, focusing on processes involving cell separation.  相似文献   

11.
12.
To achieve a detailed understanding of processes in biological systems, cellular features must be quantified in the three‐dimensional (3D) context of cells and organs. We described use of the intrinsic root coordinate system (iRoCS) as a reference model for the root apical meristem of plants. iRoCS enables direct and quantitative comparison between the root tips of plant populations at single‐cell resolution. The iRoCS Toolbox automatically fits standardized coordinates to raw 3D image data. It detects nuclei or segments cells, automatically fits the coordinate system, and groups the nuclei/cells into the root's tissue layers. The division status of each nucleus may also be determined. The only manual step required is to mark the quiescent centre. All intermediate outputs may be refined if necessary. The ability to learn the visual appearance of nuclei by example allows the iRoCS Toolbox to be easily adapted to various phenotypes. The iRoCS Toolbox is provided as an open‐source software package, licensed under the GNU General Public License, to make it accessible to a broad community. To demonstrate the power of the technique, we measured subtle changes in cell division patterns caused by modified auxin flux within the Arabidopsis thaliana root apical meristem.  相似文献   

13.
Cell division and cell fate decisions are highly regulated processes that need to be coordinated both spatially and temporally for correct plant growth and development. Gaining a deeper molecular and cellular understanding of these links is especially relevant for plant biology since, unlike in animals, formation of new organs is a process that takes place after embryogenesis and continues throughout the entire plant lifespan. The recent identification of a novel factor, GEM, has provided a molecular framework that coordinates cell division to cell fate in the Arabidopsis epidermis. GEM is an inhibitor of cell division through interacting with CDT1, a DNA replication protein. It also inhibits the expression of the homeobox GLABRA2 (GL2) gene that determines the hair/non-hair fate and the pavement/trichome fate in the root and leaf epidermis, respectively. GEM seems to be crucial in controlling the balance of activating/repressing histone modifications at its target promoters.Key Words: cell division, cell cycle, cell fate, GEM, GLABRA2, CDT1, DNA replication, chromatin, histone methylation, gene expression, root hair, Arabidopsis, plant  相似文献   

14.
Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.  相似文献   

15.
The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.  相似文献   

16.
17.
The aboveground body of higher plants has a modular structure of repeating units, or phytomers. As such, the position, size, and shape of the individual phytomer dictate the plant architecture. The Arabidopsis (Arabidopsis thaliana) ERECTA (ER) gene regulates the inflorescence architecture by affecting elongation of the internode and pedicels, as well as the shape of lateral organs. A large-scale activation-tagging genetic screen was conducted in Arabidopsis to identify novel genes and pathways that interact with the ER locus. A dominant mutant, super1-D, was isolated as a nearly complete suppressor of a partial loss-of-function allele er-103. We found that SUPER1 encodes YUCCA5, a novel member of the YUCCA family of flavin monooxygenases. The activation tagging of YUCCA5 conferred increased levels of free indole acetic acid, increased auxin response, and mild phenotypic characteristics of auxin overproducers, such as elongated hypocotyls, epinastic cotyledons, and narrow leaves. Both genetic and cellular analyses indicate that auxin and the ER pathway regulate cell division and cell expansion in a largely independent but overlapping manner during elaboration of inflorescence architecture.  相似文献   

18.
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.  相似文献   

19.
Although the final size of plant organs is influenced by environmental cues, it is generally accepted that the primary size determinants are intrinsic factors that regulate and coordinate cell proliferation and cell expansion. Here, we show that optimal proteasome function is required to maintain final shoot organ size in Arabidopsis (Arabidopsis thaliana). Loss of function of the subunit regulatory particle AAA ATPase (RPT2a) causes a weak defect in 26S proteasome activity and leads to an enlargement of leaves, stems, flowers, fruits, seeds, and embryos. These size increases are a result of increased cell expansion that compensates for a reduction in cell number. Increased ploidy levels were found in some but not all enlarged organs, indicating that the cell size increases are not caused by a higher nuclear DNA content. Partial loss of function of the regulatory particle non-ATPase (RPN) subunits RPN10 and RPN12a causes a stronger defect in proteasome function and also results in cell enlargement and decreased cell proliferation. However, the increased cell volumes in rpn10-1 and rpn12a-1 mutants translated into the enlargement of only some, but not all, shoot organs. Collectively, these data show that during Arabidopsis shoot development, the maintenance of optimal proteasome activity levels is important for balancing cell expansion with cell proliferation rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号