首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowing the distribution of fitness effects (DFE) of new mutations is important for several topics in evolutionary genetics. Existing computational methods with which to infer the DFE based on DNA polymorphism data have frequently assumed that the DFE can be approximated by a unimodal distribution, such as a lognormal or a gamma distribution. However, if the true DFE departs substantially from the assumed distribution (e.g., if the DFE is multimodal), this could lead to misleading inferences about its properties. We conducted simulations to test the performance of parametric and nonparametric discretized distribution models to infer the properties of the DFE for cases in which the true DFE is unimodal, bimodal, or multimodal. We found that lognormal and gamma distribution models can perform poorly in recovering the properties of the distribution if the true DFE is bimodal or multimodal, whereas discretized distribution models perform better. If there is a sufficient amount of data, the discretized models can detect a multimodal DFE and can accurately infer the mean effect and the average fixation probability of a new deleterious mutation. We fitted several models for the DFE of amino acid-changing mutations using whole-genome polymorphism data from Drosophila melanogaster and the house mouse subspecies Mus musculus castaneus. A lognormal DFE best explains the data for D. melanogaster, whereas we find evidence for a bimodal DFE in M. m. castaneus.  相似文献   

2.
The effect of a mutation on fitness may differ between populations depending on environmental and genetic context, but little is known about the factors that underlie such differences. To quantify genome-wide correlations in mutation fitness effects, we developed a novel concept called a joint distribution of fitness effects (DFE) between populations. We then proposed a new statistic w to measure the DFE correlation between populations. Using simulation, we showed that inferring the DFE correlation from the joint allele frequency spectrum is statistically precise and robust. Using population genomic data, we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In these species, we found that the overall correlation of the joint DFE was inversely related to genetic differentiation. In humans and D. melanogaster, deleterious mutations had a lower DFE correlation than tolerated mutations, indicating a complex joint DFE. Altogether, the DFE correlation can be reliably inferred, and it offers extensive insight into the genetics of population divergence.  相似文献   

3.
Keightley PD  Eyre-Walker A 《Genetics》2007,177(4):2251-2261
The distribution of fitness effects of new mutations (DFE) is important for addressing several questions in genetics, including the nature of quantitative variation and the evolutionary fate of small populations. Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while simultaneously estimating parameters of a demographic model that allows a population size change at some time in the past. We tested the method using simulations and found that it accurately recovers simulated parameter values, even if the simulated demography differs substantially from that assumed in our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects sampled from a gamma distribution, the mean estimate for the distribution shape parameter is approximately 0.2 for human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we estimate that the shape parameter is approximately 0.35. Differences in the shape of the distribution and the mean selection coefficient between humans and Drosophila result in significantly more strongly deleterious mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less frequent.  相似文献   

4.
The distribution of fitness effects (DFE) of new mutations is a key parameter in determining the course of evolution. This fact has motivated extensive efforts to measure the DFE or to predict it from first principles. However, just as the DFE determines the course of evolution, the evolutionary process itself constrains the DFE. Here, we analyze a simple model of genome evolution in a constant environment in which natural selection drives the population toward a dynamic steady state where beneficial and deleterious substitutions balance. The distribution of fitness effects at this steady state is stable under further evolution and provides a natural null expectation for the DFE in a population that has evolved in a constant environment for a long time. We calculate how the shape of the evolutionarily stable DFE depends on the underlying population genetic parameters. We show that, in the absence of epistasis, the ratio of beneficial to deleterious mutations of a given fitness effect obeys a simple relationship independent of population genetic details. Finally, we analyze how the stable DFE changes in the presence of a simple form of diminishing-returns epistasis.  相似文献   

5.
Current procedures for inferring population history generally assume complete neutrality—that is, they neglect both direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness effects and the fraction of directly selected sites interact with demographic parameter estimation. The results show that, even after masking functional genomic regions, background selection may cause the mis-inference of population growth under models of both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by population size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of population growth caused by selection. By treating the distribution of fitness effect as a nuisance parameter and averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demographic histories with reasonable accuracy.  相似文献   

6.
Resolving the role of natural selection is a basic objective of evolutionary biology. It is generally difficult to detect the influence of selection because ubiquitous non-selective stochastic change in allele frequencies (genetic drift) degrades evidence of selection. As a result, selection scans typically only identify genomic regions that have undergone episodes of intense selection. Yet it seems likely such episodes are the exception; the norm is more likely to involve subtle, concurrent selective changes at a large number of loci. We develop a new theoretical approach that uncovers a previously undocumented genome-wide signature of selection in the collective divergence of allele frequencies over time. Applying our approach to temporally resolved allele frequency measurements from laboratory and wild Drosophila populations, we quantify the selective contribution to allele frequency divergence and find that selection has substantial effects on much of the genome. We further quantify the magnitude of the total selection coefficient (a measure of the combined effects of direct and linked selection) at a typical polymorphic locus, and find this to be large (of order 1%) even though most mutations are not directly under selection. We find that selective allele frequency divergence is substantially elevated at intermediate allele frequencies, which we argue is most parsimoniously explained by positive—not negative—selection. Thus, in these populations most mutations are far from evolving neutrally in the short term (tens of generations), including mutations with neutral fitness effects, and the result cannot be explained simply as an ongoing purging of deleterious mutations.  相似文献   

7.
The distribution of fitness effects (DFE) among new mutations plays a critical role in adaptive evolution and the maintenance of genetic variation. Although fitness landscape models predict several key features of the DFE, most theory to date focuses on predictable environmental conditions, while ignoring stochastic environmental fluctuations that feature prominently in the ecology of many organisms. Here, we derive an extension of Fisher's geometric model that incorporates two common effects of environmental variation: (1) nonadaptive genotype‐by‐environment interactions (G × E), in which the phenotype of a given genotype varies across environmental contexts; and (2) random fluctuation of the fitness optimum, which generates fluctuating selection. We show that both factors cause a mismatch between the DFE within single generations and the distribution of geometric mean fitness effects (averaged over multiple generations) that governs long‐term evolutionary change. Such mismatches permit strong evolutionary constraints—despite an abundance of beneficial fitness variation within single environmental contexts—and to conflicting DFE estimates from direct versus indirect inference methods. Finally, our results suggest an intriguing parallel between the genetics and ecology of evolutionary constraints, with environmental fluctuations and pleiotropy placing qualitatively similar limits on the availability of adaptive genetic variation.  相似文献   

8.
The transition from outcrossing to selfing is predicted to reduce the genome-wide efficacy of selection because of the lower effective population size (Ne) that accompanies this change in mating system. However, strongly recessive deleterious mutations exposed in the homozygous backgrounds of selfers should be under strong purifying selection. Here, we examine estimates of the distribution of fitness effects (DFE) and changes in the magnitude of effective selection coefficients (Nes) acting on mutations during the transition from outcrossing to selfing. Using forward simulations, we investigated the ability of a DFE inference approach to detect the joint influence of mating system and the dominance of deleterious mutations on selection efficacy. We investigated predictions from our simulations in the annual plant Eichhornia paniculata, in which selfing has evolved from outcrossing on multiple occasions. We used range-wide sampling to generate population genomic datasets and identified nonsynonymous and synonymous polymorphisms segregating in outcrossing and selfing populations. We found that the transition to selfing was accompanied by a change in the DFE, with a larger fraction of effectively neutral sites (Nes < 1), a result consistent with the effects of reduced Ne in selfers. Moreover, an increased proportion of sites in selfers were under strong purifying selection (Nes > 100), and simulations suggest that this is due to the exposure of recessive deleterious mutations. We conclude that the transition to selfing has been accompanied by the genome-wide influences of reduced Ne and strong purifying selection against deleterious recessive mutations, an example of purging at the molecular level.  相似文献   

9.
Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex‐biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations—including the correlation of mutant fitness effects between the sexes—on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness.  相似文献   

10.
The distribution of fitness effects (DFE) of new mutations is of fundamental importance in evolutionary genetics. Recently, methods have been developed for inferring the DFE that use information from the allele frequency distributions of putatively neutral and selected nucleotide polymorphic variants in a population sample. Here, we extend an existing maximum-likelihood method that estimates the DFE under the assumption that mutational effects are unconditionally deleterious, by including a fraction of positively selected mutations. We allow one or more classes of positive selection coefficients in the model and estimate both the fraction of mutations that are advantageous and the strength of selection acting on them. We show by simulations that the method is capable of recovering the parameters of the DFE under a range of conditions. We apply the method to two data sets on multiple protein-coding genes from African populations of Drosophila melanogaster. We use a probabilistic reconstruction of the ancestral states of the polymorphic sites to distinguish between derived and ancestral states at polymorphic nucleotide sites. In both data sets, we see a significant improvement in the fit when a category of positively selected amino acid mutations is included, but no further improvement if additional categories are added. We estimate that between 1% and 2% of new nonsynonymous mutations in D. melanogaster are positively selected, with a scaled selection coefficient representing the product of the effective population size, N(e), and the strength of selection on heterozygous carriers of ~2.5.  相似文献   

11.
Eyre-Walker A  Woolfit M  Phelps T 《Genetics》2006,173(2):891-900
The distribution of fitness effects of new mutations is a fundamental parameter in genetics. Here we present a new method by which the distribution can be estimated. The method is fairly robust to changes in population size and admixture, and it can be corrected for any residual effects if a model of the demography is available. We apply the method to extensively sampled single-nucleotide polymorphism data from humans and estimate the distribution of fitness effects for amino acid changing mutations. We show that a gamma distribution with a shape parameter of 0.23 provides a good fit to the data and we estimate that >50% of mutations are likely to have mild effects, such that they reduce fitness by between one one-thousandth and one-tenth. We also infer that <15% of new mutations are likely to have strongly deleterious effects. We estimate that on average a nonsynonymous mutation reduces fitness by a few percent and that the average strength of selection acting against a nonsynonymous polymorphism is approximately 9 x 10(-5). We argue that the relaxation of natural selection due to modern medicine and reduced variance in family size is not likely to lead to a rapid decline in genetic quality, but that it will be very difficult to locate most of the genes involved in complex genetic diseases.  相似文献   

12.
Theoretical studies of adaptation emphasize the importance of understanding the distribution of fitness effects (DFE) of new mutations. We report the isolation of 100 adaptive mutants—without the biasing influence of natural selection—from an ancestral genotype whose fitness in the niche occupied by the derived type is extremely low. The fitness of each derived genotype was determined relative to a single reference type and the fitness effects found to conform to a normal distribution. When fitness was measured in a different environment, the rank order changed, but not the shape of the distribution. We argue that, even with detailed knowledge of the genetic architecture underpinning the adaptive types (as is the case here), the DFEs remain unpredictable, and we discuss the possibility that general explanations for the shape of the DFE might not be possible in the absence of organism-specific biological details.  相似文献   

13.
14.
15.
The role of adaptation in the evolutionary process has been contentious for decades. At the heart of the century-old debate between neutralists and selectionists lies the distribution of fitness effects (DFE)—that is, the selective effect of all mutations. Attempts to describe the DFE have been varied, occupying theoreticians and experimentalists alike. New high-throughput techniques stand to make important contributions to empirical efforts to characterize the DFE, but the usefulness of such approaches depends on the availability of robust statistical methods for their interpretation. We here present and discuss a Bayesian MCMC approach to estimate fitness from deep sequencing data and use it to assess the DFE for the same 560 point mutations in a coding region of Hsp90 in Saccharomyces cerevisiae across six different environmental conditions. Using these estimates, we compare the differences in the DFEs resulting from mutations covering one-, two-, and three-nucleotide steps from the wild type—showing that multiple-step mutations harbor more potential for adaptation in challenging environments, but also tend to be more deleterious in the standard environment. All observations are discussed in the light of expectations arising from Fisher’s geometric model.  相似文献   

16.
MOTIVATION: The observation of positive selection acting on a mutant indicates that the corresponding mutation has some form of functional relevance. Determining the fitness effects of mutations thus has relevance to many interesting biological questions. One means of identifying beneficial mutations in an asexual population is to observe changes in the frequency of marked subsets of the population. We here describe a method to estimate the establishment times and fitnesses of beneficial mutations from neutral marker frequency data. RESULTS: The method accurately reproduces complex marker frequency trajectories. In simulations for which positive selection is close to 5% per generation, we obtain correlations upwards of 0.91 between correct and inferred haplotype establishment times. Where mutation selection coefficients are exponentially distributed, the inferred distribution of haplotype fitnesses is close to being correct. Applied to data from a bacterial evolution experiment, our method reproduces an observed correlation between evolvability and initial fitness defect.  相似文献   

17.
Keightley PD  Halligan DL 《Genetics》2011,188(4):931-940
Sequencing errors and random sampling of nucleotide types among sequencing reads at heterozygous sites present challenges for accurate, unbiased inference of single-nucleotide polymorphism genotypes from high-throughput sequence data. Here, we develop a maximum-likelihood approach to estimate the frequency distribution of the number of alleles in a sample of individuals (the site frequency spectrum), using high-throughput sequence data. Our method assumes binomial sampling of nucleotide types in heterozygotes and random sequencing error. By simulations, we show that close to unbiased estimates of the site frequency spectrum can be obtained if the error rate per base read does not exceed the population nucleotide diversity. We also show that these estimates are reasonably robust if errors are nonrandom. We then apply the method to infer site frequency spectra for zerofold degenerate, fourfold degenerate, and intronic sites of protein-coding genes using the low coverage human sequence data produced by the 1000 Genomes Project phase-one pilot. By fitting a model to the inferred site frequency spectra that estimates parameters of the distribution of fitness effects of new mutations, we find evidence for significant natural selection operating on fourfold sites. We also find that a model with variable effects of mutations at synonymous sites fits the data significantly better than a model with equal mutational effects. Under the variable effects model, we infer that 11% of synonymous mutations are subject to strong purifying selection.  相似文献   

18.
19.
Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effects of beneficial mutations are exponentially distributed where the fitness of the wild type is moderate to high. However, when the fitness of the wild type is low, the data no longer follow an exponential distribution, because many beneficial mutations have large effects on fitness. There is no existing population genetic theory to explain this bias towards mutations of large effects, but it can be readily explained by the underlying biochemistry of rifampicin–RNA polymerase interactions. These results demonstrate the limitations of current population genetic theory for predicting adaptation to severe sources of stress, such as antibiotics, and they highlight the utility of integrating statistical and biophysical approaches to adaptation.  相似文献   

20.
H. Akashi  S. W. Schaeffer 《Genetics》1997,146(1):295-307
In Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster, codon bias may be maintained by a balance among mutation pressure, genetic drift, and natural selection favoring translationally superior codons. Under such an evolutionary model, silent mutations fall into two fitness categories: preferred mutations that increase codon bias and unpreferred changes in the opposite direction. This prediction can be tested by comparing the frequency spectra of synonymous changes segregating within populations; natural selection will elevate the frequencies of advantageous mutations relative to that of deleterious changes. The frequency distributions of preferred and unpreferred mutations differ in the predicted direction among 99 alleles of two D. pseudoobscura genes and five alleles of eight D. simulans genes. This result confirms the existence of fitness classes of silent mutations. Maximum likelihood estimates suggest that selection intensity at silent sites is, on average, very weak in both D. pseudoobscura and D. simulans (|N(e)s| & 1). Inference of evolutionary processes from within-species sequence variation is often hindered by the assumption of a stationary frequency distribution. This assumption can be avoided when identifying the action of selection and tested when estimating selection intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号