首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reaction catalyzed by arginine kinase have been determined at 9.5 and 23°C for in vivo leg muscle of Carcinus maenas (the common shore crab) using the noninvasive technique of 31P-NMR spectroscopy. Concentrations of mobile phosphorus metabolites were the same at both temperatures: 78.7 mM for arginine phosphate, 9.0 mM for adenosine triphosphate (ATP), and 2.6 mM for inorganic phosphate (Pi), as estimated from NMR resonance intensities and literature values for ATP concentration as assayed by traditional biochemical methods. Apparent unidirectional rate constants for formation of ATP from arginine phosphate and ADP were 0.09 s?1 at 9.5°C and 0.27 s?1 at 23°C. Pseudo-first-order rate constants for arginine phosphate generation from Arg and ATP were 0.38 and 1.10 s?1 at 9.5 and 23°C, respectively. In vivo Q10 for the arginine kinase reaction between 9.5 and 23°C was thus 2.2 for both directions. When the kinetic data are analyzed using the Arrhenius equation, activation energies of 126 kJ/mol for ATP formation and 105 kJ/mol for arginine phosphate formation are found. The measured chemical fluxes through arginine kinase in the forward reaction (arginine phosphate hydrolysis) were twice those in the reverse reaction, consistent with either compartmentation of substrates or participation of substrates in alternative metabolic pathways.  相似文献   

2.
Mammalian lactate dehydrogenase and phosphofructokinase are more susceptible in vitro to superoxide and hydroxyl (·OH) radicals than pyruvate kinase and glucose-6-phosphate dehydrogenase, suggesting that differential inactivation of regulatory enzymes contributes to the metabolic disintegration in stenoxic tissues during transient hypoxia. Like-wise, creatine kinase in smooth muscle from porcine ileum is significantly reduced by hypoxia-reoxygenation ex vivo from 300 (±18.2 SE,n=8) to 196 U·g wet wt-1 (±16.7,P0.001, ANOVA). Conversely, arginine kinase, from the myocardium ofLimulus polyphemus, a species that tolerates anoxia for days was 2.9-fold less susceptible to oxidative inactivation. To examine whether preservation of kinase function is related to euryoxic capacity, a combination of non-invasive31P-NMR spectroscopy and enzyme-linked assays was used to follow ATP and phosphagen status during hypoxia-reoxygenation in porcine ileum smooth muscle,L. polyphemus myocardium, and the myocardium ofArgopecten irradians, a scallop species tolerant of hypoxia for only 24 h. Despite wide differences in phylogeny, euryoxic capacity and oxidative vulnerability of the phosphagen kinases, in all three tissues, the phosphagen pool recovered concomitant with ATP during reoxygenation, thereby revealing competent kinase function. In the mammalian tissue, such preservation of kinase function is facilitated by a 2400-fold excess of enzyme activity.  相似文献   

3.
The kinetic properties of honeybee arginine phosphokinase (APK), which catalyzes the reaction: Arginine phosphate + ADP + H+ ? arginine + ATP, have been studied.In the direction of ATP synthesis, the pH optimum was around pH 7.2 and the activation energy over the range 18–44 °C was about 10,500 cal/mole. The optimum ratio of Mg2+:ADP was about 4:1.In the direction of arginine phosphate (AP) synthesis, the enzyme had a pH optimum around pH 8.3. The energy of activation for the reaction over the range 22–39 °C was about 7500 cal/mole. The optimum ratio of Mg2+:ATP was about 1:1.The initial velocities of the reactions in the direction of ATP and AP synthesis were measured at varying concentrations of one substrate while the concentration of the other substrate was held constant at several levels. The double reciprocal plots of the data obtained yielded a series of intersecting lines, indicating that the enzyme has a sequential mechanism. Radioisotope exchange experiment showed that arginine phosphokinase did not catalyze ATP ? ADP exchange in the absence of arginine. Product inhibition studies showed that arginine was competitive with AP and noncompetitive with ADP; whereas ATP was competitive with ADP and noncompetitive with arginine. The results from initial velocity, radioisotope exchange, and product inhibition studies suggested that the enzyme has a rapid equilibrium, random mechanism.  相似文献   

4.
The steady-state rate of ATP synthesis in the isolated, Langendorff-perfused rat heart was determined using a 31P NMR saturation transfer method. At 37°C and a perfusion pressure of 70 cm H2O the value is 2.8 ± 0.3 (n=5 ± S.E.M.) μmol.s?1. (g. dry wt.)?1. The activity of creatine phosphokinase measured in the same experiments was 14.6 ± 1.0 μ mol.s?1 .(g. dry wt.)?1. From the rate of ATP synthesis and the separately measured oxygen consumption we calculated an apparent mitochondrial ADP:O ratio of 3.5 ± 0.8 in the intact tissue.  相似文献   

5.
31P-NMR spectra of bullfrog stomach smooth muscle showed peaks for creatine phosphate (4.8 μmol·g−1 wet wt.), ATP (3.6), inorganic phosphate (Pi, 2.4), phosphomonoesters (3.0) and phosphodiesters (3.3). The intracellular pH was 7.3, and calculated from the chemical shift of Pi. 1H-NMR spectra of smooth muscle yielded peaks of 2.9 for lactate, 6.6 for total creatine (creatine phosphate + creatine) and methyl protons of choline tentatively assigned to glycerolphosphorylcholine or to membrane phospholipids. Creatine phosphate and ATP decreased under anaerobic conditions, and intracellular acidification was observed with the concomitant increase in lactate. 31P saturation transfer studies showed that saturation of the γ-ATP resonance reduced the intensity of creatine phosphate to 60% of its control value, and the measured T1 value of creatine phosphate was 2.4 s with saturation. The calculated forward flux of the creatine kinase reaction (decomposition direction of creatine phosphate) was 0.77 μmol·g−1 wet wt.·s−1. The creatine kinase flux was approx. 100-times larger than the ATP turnover rate, calculated from the oxygen consumption rate with the assumption, P/O = 3. In conclusion, the creatine kinase reaction is at equilibrium in resting smooth muscle of bullfrog stomach.  相似文献   

6.
We wished to examine the effects of diabetes on muscle glutamine kinetics. Accordingly, female Wistar rats (200 g) were made diabetic by a single injection of streptozotocin (85 mg/kg) and studied 4 days later; control rats received saline. In diabetic rats, glutamine concentration of gastrocnemius muscle was 33% less than in control rats: 2.60 ± 0.06 μmol/g vs. 3.84 ± 0.13 μmol/g (P < 0.001). In gastrocnemius muscle, glutamine synthetase activity (Vmax) was unaltered by diabetes (approx. 235 nmol/min per g) but glutaminase Vmax increased from 146 ± 29 to 401 ± 94 nmol/min per g; substrate Km values of neither enzyme were affected by diabetes. Net glutamine efflux (AZ concentration difference × blood flow) from hindlimbs of diabetic rats in vivo was greater than control values (?30.0 ± 3.2 vs. ?1.9 ± 2.6 nmol/min per g (P < 0.001) and hindlimb NH3 uptake was concomitantly greater (about 27 nmol/min per g). The glutamine transport capacity (Vmax) of the Na-dependent System Nm in perfused hindlimb muscle was 29% lower in diabetic rats than in controls (820 ± 50 vs. 1160 ± 80 nmol/min per g (P < 0.01)), but transporter Km was the same in both groups (9.2 ± 0.5 nM). The difference between inward and net glutamine fluxes indicated that glutamine efflux in perfused hindlimbs was stimulated in diabetes at physiological perfusate glutamine (0.5 mM); ammonia (1 mM in perfusate) had little effect on net glutamine flux in control and diabetic muscles. In Intramuscular Na+ was 26% greater in diabetic (13.2 μmol/g) than control muscle, but muscle K+ (100 μmol/g) was similar. The accelerated rate of glutamine release from skeletal muscle and the lower muscle free glutamine concentration observed in diabetes may result from a combination of; (i), a diminished Na+ electrochemical gradient (i.e., the net driving force for glutamine accrual in muscle falls); (ii), a faster turnover of glutamine in muscle and (iii), an increased Vmax/Km for sarcolemmal glutamine efflux.  相似文献   

7.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

8.
《BBA》2023,1864(3):148973
The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s−1.mg−1 and CSC:27.5 ± 12.0 pmolO2.s−1.mg−1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s−1.mg−1 and CSC:44.6 ± 11.1 pmolO2.s−1.mg−1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.  相似文献   

9.
Corn (Zea mays L.) root tips were subjected to different conditions so that nucleotide levels varied over a wide range. Levels of nucleotides in corn root tips were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography. Results indicate: (a) Similar amounts of NTP and sugar nucleotides were observed by in vivo NMR and in extracts. In contrast, a significant amount of NDP observed in root tip extracts was not detected by in vivo NMR. Thus, for a given sample, [NTP]/[NDP] ratios determined in vivo by 31P-NMR are always higher than ratios observed in extracts, deviating by ~4-fold at the highest ratios. The NMR-invisible pool of NDP appeared quite metabolically inert, barely changing in size as total cell NDP changed. We conclude that NDP in corn root tips is compartmented with respect to NMR visibility, and that it is the NMR-visible pool which responds dynamically to metabolic state. The NMR-invisible NDP could either be immobilized (and so have broad, undetectable NMR signals), or be complexed with species that cause the chemical shift of NDP to change (so it does not contribute to the NMR signal of free NDP), or both. (b) 31P-NMR cannot distinguish between bases (A, U, C, and G) of nucleotides. HPLC analysis of root tip extracts showed that the relative amount of each base in the NTP and NDP pools was quite constant in the different samples. (c) In extracts, for each of the nonadenylate nucleotides, [NTP]/[NDP] was linearly proportional to [ATP]/[ADP], indicating near equilibrium in the nucleoside diphosphokinase (NDPK) reaction. However, the apparent equilibrium constants for the phosphorylation of GDP and UDP by ATP were significantly lower than 1, the true equilibrium constant for the NDPK reaction. Thus, for a given sample, [ATP]/[ADP] ~ [CTP]/[CDP] > [UTP]/[UDP] > [GTP]/[GDP]. This result suggests that the different NDPs in corn root tips do not have equal access to NDPK.  相似文献   

10.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

11.
  • 1.1. A study has been made of phosphate-containing metabolites in single barnacle muscle fibers using phosphorus-31 nuclear magnetic resonance.
  • 2.2. Spectra from single fibers (∼50 mg in wet weight) show major resonances from sugar phosphates, inorganic phosphate, arginine phosphate and the α, β and γ phosphorus atoms of ATP.
  • 3.3. The approximate “free” concentration of each metabolite was determined by integration of the spectrum, using a sample of 1 M-methylene diphosphonic acid as a reference. A notable feature of the results obtained is that the concentrations of SP&Pi in freshly dissected fibers are low.
  • 4.4. Time-dependent changes in 31P-NMR spectra indicate that ArP declines fairly slowly, while SP and Pi rises. The half-life of ArP at 26°C turns out to be about 8 hr. ATP remains relatively constant for the first 8 hr but disappears following the disappearance of ArP. As the intensity of the Pi resonance increases with time, it broadens and moves upfield, suggesting internal acidosis.
  • 5.5. These results demonstrate that 31P-NMR can provide useful information about metabolism and its regulation in single barnacle muscle fibers.
  相似文献   

12.
The main aim of this study was to examine the hypothesis that creatine (Cr) feeding enhances myocellular glycogen storage in humans undergoing carbohydrate loading. Twenty trained male subjects were randomly assigned to have their diets supplemented daily with 252 g of glucose polymer (GP) and either 21 g of Cr (CRGP, n=10) or placebo (PL-GP, n=10) for 5 days. Changes in resting myocellular glycogen and phosphocreatine (PCr) were determined with Magnetic Resonance Spectroscopy (13C- and31P-MRS, respectively). After CR-GP, the levels of intramyocellular glycogen increased from 147±13 (standard error) mmol·(kg wet weight)?1) to 182±17 mmol·(kg wet weight)?1, while it increased from 134±17 mmol·(kg wet weight)? to 182±17 mmol·(kg wet weight)?1 after PL-GP; the increments in intramyocellular glycogen concentrations were not statistically different. The increment in the PCr/ATP ratio after CR-GP (+0.20±0.12) was significantly different compared to PL-GP (?0.34±0.16) (p<0.05). The present results do not support the hypothesis that Cr loading increases muscle glycogen storage.  相似文献   

13.
The interaction between glucagon and dicaprylphosphatidylcholine (DCPC) was studied by fluorescence, circular dichroism and calorimetry, as well as by 1H- and 31P-nuclear magnetic resonance. The water-soluble lipid-protein complex was also characterized by gel filtration and ultracentrifugation. The complex appeared to be monodisperse by sedimentation equilibrium measurements, with a molecular weight of (4.55 ± 0.57)·104. This complex contained approximately 7 molecules of glucagon and 35 molecules of phospholipid. Proton-decoupled 31P-NMR spectra of the phospholipid in the lipid-protein complex display narrower resonances than those of sonicated vesicles of DCPC, and 1H-31P coupling could be detected in proton coupled spectra. These NMR results, together with gel-filtration results, suggest that glucagon ‘solubilizes’ phospholipid aggregates, forming a lipid-protein complex which is smaller than sonicated preparations of DCPC. 1H-NMR resonance of both the methionine methyl group (met-27) and the aromatic envelope of glucagon are broadened by the phospolipid, indicating that the C-terminal region and the aromatic residues are involved in the interaction with the phospholipid. Nuclear magnetic resonance titrations of the imidazole ring C(2) and C(4) protons of the histidine residue of glucagon show that DCPC lowers the pK of the imidazole. The alterations caused by the phospholipid in the far and near ultraviolet CD spectra of glucagon reflect, respectively, the increased helix content of the hormone and the fact that the aromatic residues are located in a more structured environment. The phospholipid also alters the fluorescence properties of glucagon, shifting the fluorescence emission maximum of the hormone to shorter wavelength, and enhancing its relative intensity. This suggests that the fluorophore is experiencing a more hydrophobic environment in the presence of the lipid. Binding of glucagon to the phospholipid was analysed by Scatchard plots of the enhancement of fluorescence caused by the phospholipid and showed that the equilibrium binding constants of glucagon to DCPC are (4.4 ± 0.5)·104M?1 and (7.5±0.5)·104M?1, at 15°C and 25°C, respectively. The average number of moles of phospholipid bound per mole of glucagon is 4.4±0.6. The isothermal enthalpy of reaction of glucagon with DCPC is ?20.5 kcal/mol of glucagon at 25°C and ?32.5 kcal/mol of glucagon at 15°C. The observed enthalpies can arise from glucagon-induced cyrstallization of the phospholipid, from the non-covalent interactions between the peptide and lipid as well as from the lipid-induced conformational change in the protein. These results demonstrate that, unlike the complexes formed between glucagon and phospholipids which form more stable bilayers, the complex formed between glucagon and DCPC is stable over a wide range of temperatures, including temperatures well above the phase transition.  相似文献   

14.
Intramuscular glutamine falls with injury and disease in circumstances associated with increases in blood corticosteroids. We have investigated the effects of corticosteroid administration (0.44 mg/kg dexamethasone daily for 8 days, 200 g female rats) on intramuscular glutamine and Na+, muscle glutamine metabolism and sarcolemmal glutamine transport in the perfused hindlimb. After dexamethasone treatment intramuscular glutamine fell by 45% and Na+ rose by 25% (the respective muscle/plasma distribution ratios changed from 8.6 to 4.5 and 0.12 to 0.15); glutamine synthetase and glutaminase activities were unchanged at 475 ± 75 and 60 ± 19 nmol/g muscle per min. Glutamine output by the hindlimb of anaesthetized rats was increased from 31 to 85 nmol/g per min. Sarcolemmal glutamine transport was studied by paired-tracer dilution in the perfused hindlimb: the maximal capacity (Vmax) for glutamine transport into muscle (by Na+-glutamine symport) fell from 1058 ± 310 to 395 ± 110 nmol/g muscle per min after dexamethasone treatment, accompanied by a decrease in the Km (from 8.1 ± 1.9 to 2.1 ± 0.4 mM glutamine). At physiological plasma glutamine concentration (0.75 mM) dexamethasone appeared to cause a proportional increase in sarcolemmal glutamine efflux over influx. Addition of dexamethasone (200 nM) to the perfusate of control rat hindlimbs caused acute changes in Vmax and Km of glutamine transport similar to those resulting from 8-day dexamethasone treatment. The reduction in muscle glutamine concentration after dexamethasone treatment may be primarily due to a reduction in the driving force for intramuscular glutamine accumulation, i.e., in the Na+ electrochemical gradient. The prolonged increase in muscle glutamine output after dexamethasone treatment (which occurs despite a reduction in the size of the intramuscular glutamine pool) appears to be due to a combination of (a) accelerated sarcolemmal glutamine efflux and (b) increased intramuscular synthesis of glutamine.  相似文献   

15.
Arginase activity (3.1 ± 0.5 units/g (wet wt) of tissue) was found associated to the cytosolic fraction of the gill cells of the bivalve Semele solida. The enzyme, with a molecular weight of 120,000 ± 3000, was partially purified, and some of the enzymic properties were were examined. The activation of the enzyme by Mn2+ followed hyperbolic kinetics with a KMn value of 0.10 ± 0.02 μM. In addition to Mn2+, the metal ion requirement of the enzyme was satisfied by Ni2+, Cd2+ and Co2+; Zn2+ was inhibitory to ail the Values of Km for arginine and Ki for lysine inhibition, were the same, regardless of the metal ion used to activate the enzyme; Km values were 20 mM at pH 7.5 and 12 mM at the optimum pH of 9.5. Competitive inhibition was caused by ornithine, lysine and proline, whereas branched chain amino acids were non competitive inhibitors of the enzyme.  相似文献   

16.
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo 31P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangle contributions of chemical exchange and cross-relaxation to magnetization transfer effects seen in 31P magnetic resonance spectroscopy of skeletal muscle, we performed saturation transfer experiments on wild type and double-mutant mice lacking the cytosolic muscle creatine kinase and adenylate kinase isoforms. We find that cross-relaxation, observed as nuclear Overhauser effects (NOEs), is responsible for magnetization transfer between ATP phosphates both in wild type and in mutant mice. Analysis of 31P relaxation properties identifies these effects as transferred NOEs, i.e. underlying this process is an exchange between free cellular ATP and ATP bound to slowly rotating macromolecules. This explains the β-ATP signal decrease upon saturation of the γ-ATP resonance. Although this usually is attributed to β-ADP ↔ β-ATP phosphoryl exchange, we did not detect an effect of this exchange on the β-ATP signal as expected for free [ADP], derived from the creatine kinase equilibrium reaction. This indicates that in resting muscle, conditions prevail that prevent saturation of β-ADP spins and puts into question the derivation of free [ADP] from the creatine kinase equilibrium. We present a model, matching the experimental result, for ADP ↔ ATP exchange, in which ADP is only transiently present in the cytosol.  相似文献   

17.
Respiration and calcification rate were estimated to quantify the effect of Zhikong scallop Chlamys farreri on marine CO2 system in Sanggou Bay, China. The C. farreri population in Sanggou Bay sequestered 78.06?±?5.76 g C m?2 y?1 for shell formation, while the CO2 fluxes due to calcification and respiration were 53.95?±?3.98 and 71.69?±?6.51 g C m?2 y?1, respectively. In order to eliminate the additional CO2 released from calcification and respiration process of C. farreri, Gracilaria lemaneiformis were introduced into the integrated system and its role was validated by in situ mesocosm methods. Eight mesocosms (1,000 L) were deployed over 42-h period and consisted of four treatments: seaweed-only, scallop-only (SP), seaweed integrated with scallop (SS), and control (C). The aqueous CO2 concentration and partial pressure of CO2 in SP treatments were significantly higher than the other three treatments (p?<?0.01), while there were no difference between SS treatments and C treatments (p?>?0.05). Furthermore, compared with the SP treatments, the presence of the G. lemaneiformis can keep the seawater pH stable. These findings suggest that seaweed and shellfish integrated aquaculture practice cannot only reduce dissolved inorganic carbon but also can alleviate ocean acidification.  相似文献   

18.
The main carotenoid in Chlorella vulgaris is lutein. The ultrasound alone or together with enzymatic pretreatment for the extraction of lutein from C. vulgaris was optimized using response surface methodology (RSM) to improve the extraction process. The optimal ultrasound extraction condition was: ultrasound frequency, 35 kHz; ultrasound intensity, 56.58 W/cm2; extraction temperature, 37.7°C; extraction time, 5 h; and ratio of solvent to solid, 31 mL/g, where the lutein recovery was 3.16 ± 0.03 mg/g wet C. vulgaris. The optimal enzymatic pretreatment was: reaction time, 2 h; enzyme concentration, 1.23% (v/w); pH, 4.5, and temperature 50°C. The optimal ultrasound extraction with enzymatic pretreatment was: ultrasound frequency, 35 kHz; ultrasound intensity, 56.58 W/cm2; extraction temperature, 37.7°C; extraction time, 162 min; and ratio of solvent to solid, 35.6 mL/g wet C. vulgaris, where the extraction yield of lutein was 3.36 ± 0.10 mg/g wet C. vulgaris. This was much higher than for ultrasound treatment alone. The surface areas of microalga cells treated by ultrasound with/without enzymatic pretreatment increased significantly, which might contribute to the increase in lutein yield. There were no significant differences in structure, color, and antioxidant activity of lutein between the ultrasound and conventional methods. The highest cost of the crude and lutein was obtained by the ultrasound with enzymatic pretreatment due to the complex process and liquid waste in the enzymatic pretreatment process, but the ultrasound treatment alone was the lowest. Therefore, ultrasound extraction is the most economical method for the extraction of microalgal lutein.  相似文献   

19.
1. Some metabolic effects of increased mechanical activity by the Langendorff-perfused rat heart have been characterized using 31P-NMR. Mechanical activity was increased by infusion of ouabain (0.9?7.0·10?5 M), the ionophore R02-2985 (1·10?5 M) or epinephrine (5·10?8 M). 2. Similar metabolic changes accompanied infusion of each of the positive inotropic agents into hearts perfused with buffer containing 11 mM glucose as the substrate. In each case phosphocreatine concentrations decreased. During the period of epinephrine infusion the phosphocreatine began to recover its original concentration, although there were no significant changes in mechanical activity. 3. Comparisons of the metabolic changes accompanying the positive inotropic and chronotropic effects of epinephrine were made between hearts perfused with either glucose (11 mM), acetate (5 mM) or lactate (5 mM). A time-dependent decrease in phosphocreatine concentrations also accompanied infusion of epinephrine into hearts perfused with lactate as the sole exogenous substrate, but no statistically significant metabolite changes were observed after identical epinephrine infusions with acetate as the substrate. 4. Calculation of the concentration of free ADP assuming equilibrium in the creatine phosphokinase reaction allows estimation of the cytosolic phosphate potential ([ATP][ADP][Pi]), which appears to be dependent on a number of factors, including the nature of the exogenous substrate and the level of mechanical activity. 5. Thus, we conclude that there is no general correlation between the phosphate potential and the mitochondrial respiratory rate in the perfused rat heart.  相似文献   

20.
Cl-36 is an important component of nuclear waste. The concentrations of stable chlorine (Cl) in pig and cow tissues were measured to provide information which can be used to parameterize models of 36Cl transfer into agricultural animals. The concentration of stable Cl in cows’ milk was 1.0 ± 0.2 g L−1, in cow muscle it was 0.7 ± 0.2 g kg−1 wet mass (wm) and in pig muscle 0.4 ± 0.1 g kg−1 wm. The concentration of stable Cl in cow and pig liver was 0.9 ± 0.3 g kg−1 wm, which was about two-fold higher than that in the kidney and lung. Due to homeostatic control, stable Cl concentrations in animal tissues are not related to the amount ingested daily in herbage at intake rates in the normal physiological range of up to 188 g day−1 for cows and up to 40 g day−1 for pigs. Therefore, the commonly used transfer coefficient is not suitable for use in quantifying the transfer of 36Cl to milk and meat. Since the metabolism of stable Cl and 36Cl in an animal’s body is identical, the average equilibrium ratios of 36Cl to stable Cl in the daily ration (36Cl (g kg−1)/Cl (g kg−1)) and animal tissues will be the same. We therefore conclude that the average equilibrium Cl isotopic ratio in the dietary daily intake should be used to predict the contamination of meat and milk with 36Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号