首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Miro is a highly conserved calcium‐binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified ‘hidden’ EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide‐sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand–cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation‐dependent regulation of mitochondrial function by Miro.  相似文献   

2.
During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.  相似文献   

3.
The anaphase-promoting complex (APC) is tightly regulated during cell division, often by pseudosubstrate binding to its coactivators Cdh1 and Cdc20. Budding yeast Acm1 is a Cdh1 pseudosubstrate inhibitor whose biological function is unknown. We show here that cells lacking Acm1 have defects in nuclear positioning and spindle morphology during mitosis. However, Cdh1 substrates are not destabilized in the absence of Acm1 and expression of inactive Cdh1 mutants that retain substrate binding is sufficient for the acm1 phenotype. We conclude that Acm1 is not required to inhibit APCCdh1 activity but rather prevents untimely Cdh1-substrate interactions. We further provide evidence suggesting that the substrate primarily responsible for the acm1 phenotype is the bud neck-localized kinase, Hsl1. Our results imply that at least some coactivator-substrate interactions require regulation. Several unrelated APC pseudosubstrates have been identified in diverse eukaryotes and their ability to simultaneously inhibit enzymatic activity and substrate binding may partly explain why this regulatory mechanism has been selected repeatedly during evolution.  相似文献   

4.
5.
The anaphase-promoting complex (APC) is tightly regulated during cell division, often by pseudosubstrate binding to its coactivators Cdh1 and Cdc20. Budding yeast Acm1 is a Cdh1 pseudosubstrate inhibitor whose biological function is unknown. We show here that cells lacking Acm1 have defects in nuclear positioning and spindle morphology during mitosis. However, Cdh1 substrates are not destabilized in the absence of Acm1, and expression of inactive Cdh1 mutants that retain substrate binding is sufficient for the acm1 phenotype. We conclude that Acm1 is not required to inhibit APCCdh1 activity, but rather prevents untimely Cdh1-substrate interactions. We further provide evidence suggesting that the substrate primarily responsible for the acm1 phenotype is the bud neck-localized kinase, Hsl1. Our results imply that at least some coactivator-substrate interactions require regulation. Several unrelated APC pseudosubstrates have been identified in diverse eukaryotes, and their ability to simultaneously inhibit enzymatic activity and substrate binding may partly explain why this regulatory mechanism has been selected repeatedly during evolution.Key words: anaphase-promoting complex, pseudosubstrate, Cdh1, Hsl1, Acm1, cell cycle, mitosis  相似文献   

6.
Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.  相似文献   

7.
Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.  相似文献   

8.
The geographic structure of Daphnia pulex populations from the central United States is analyzed with respect to isozyme and mitochondrial DNA variation. The species complex consists of cyclic and obligate parthenogens. A hierarchical analysis of population structure in the cyclic parthenogens by using a fixation-index approach indicates that this is one of the most extremely subdivided species yet studied. This genetic structure, much of which accrues within 100 km, is certainly due in part to the limited dispersal ability of Daphnia. However, previous work has shown that fluctuating selection can account for the spatial heterogeneity in isozyme frequencies in these populations. This may explain why the population subdivision for the mitochondrial genome increases approximately three times as rapidly with distance as does that for nuclear genes, which is slower than the neutral expectation. The obligate parthenogens are shown to be polyphyletic in origin, evolutionarily young, and, in some cases, geographically widespread.  相似文献   

9.
10.
Preincubation of mammalian ribosomes with EF2 retards subsequent binding of EF1-leucyl tRNA when GTP hydrolysis does not occur. This indicates that both the elongation factors have a common binding site on the ribosome. Since the conditions permitting hydrolysis of GTP overcome this inhibition, the possible regulatory role of GTP at the common site on the ribosome is discussed.  相似文献   

11.
The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitochondrial-specific DNA base excision repair (BER) enzymes, namely EXOG and DNA polymerase gamma (Polγ), which under oxidative stress become poly(ADP-ribose)lated (PARylated). Interaction between mitochondrial BER enzymes was significantly affected in the presence of PARP1. Moreover, the repair of the oxidative-induced damage to the mitochondrial DNA in PARP1-depleted cells was found to be more robust compared to control counterpart. In addition, mitochondrial biogenesis was enhanced in PARP1-depleted cells, including mitochondrial DNA copy number and mitochondrial membrane potential. This observation was further confirmed by analysis of lung tissue isolated from WT and PARP1 KO mice. In summary, we conclude that mitochondrial PARP1, in opposite to nuclear PARP1, exerts a negative effect on several mitochondrial-specific transactions including the repair of the mitochondrial DNA.  相似文献   

12.
13.
14.
15.
16.
The mitochondrial permeability transition (MPT) pore is a calcium-sensitive channel in the mitochondrial inner membrane that plays a crucial role in cell death. Here we show that cytochrome bc(1) regulates the MPT in isolated rat liver mitochondria and in CEM and HL60 cells by two independent pathways. Glutathione depletion activated the MPT via increased production of reactive oxygen species (ROS) generated by cytochrome bc(1). The ROS producing mechanism in cytochrome bc(1) involves movement of the "Rieske" iron-sulfur protein subunit of the enzyme complex, because inhibition of cytochrome bc(1) by pharmacologically blocking iron-sulfur protein movement completely abolished ROS production, MPT activation, and cell death. The classical inhibitor of the MPT, cyclosporine A, had no protective effect against MPT activation. In contrast, the calcium-activated, cyclosporine A-regulated MPT in rat liver mitochondria was also blocked with inhibitors of cytochrome bc(1). These results indicate that electron flux through cytochrome bc(1) regulates two distinct pathways to the MPT, one unregulated and involving mitochondrial ROS and the other regulated and activated by calcium.  相似文献   

17.
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.  相似文献   

18.
19.
The lens-specific reglatory element of the delta 1-crystallin enhancer lies within the core segment (Goto et al., (1990) Mol. Cell. Biol. 10, 935-964). The element was allocated within the 55 bp long HN fragment of the core. Block-wise base substitutions were introduced to the 55 bp and their effect on the enhancer activity of the multimers in lens cells was examined. By base sequence alteration of either of the contiguous blocks 5 and 6, with their original sequence of TTGCT and CACCT, respectively, enhancer activity was totally lost. A lens nuclear factor delta EF1 was found which bound specifically to the base sequences defined by the blocks. DNA binding activity very similar to delta EF1 was also found in extracts of tissues other than lens, suggesting that delta EF1 participates in lens-specific regulation through tissue-dependent modification or interaction with other factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号