首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
T lymphocytes contain two kinetic pools of cholesterol extractable with methyl-beta-cyclodextrin (m-beta-CD): a fast pool (31.5%, t1/2=17 s) and a slow pool (68.5%, t1/2=15 min). Purification of detergent-resistant membranes (DRMs) shows that the fast pool corresponds to buoyant cholesterol. Cholesterol extraction of the fast pool (i.e. cholesterol from rafts) still allows the buoyancy of signaling proteins and their phosphorylation under CD3 stimulation. Cholesterol depletion of the slow pool (i.e. cholesterol from membranes other than rafts) is accompanied by the extraction of the whole raft followed by the inhibition of CD3-induced tyrosine-phosphorylations. Cholesterol oxidase (COase) allows a specific oxidation of raft cholesterol into cholestenone. Cholestenone leaves the DRMs and accumulates as Triton X-100-soluble material. Specific cholesterol-rich raft disruption by COase does not inhibit the activation of either Jurkat cells or T CD4+ lymphocytes. Our study challenges the real role of cholesterol-rich rafts in CD3/TCR signaling and suggests that a cholesterol-poor subtype of rafts is involved in signal transmission via the TCR.  相似文献   

2.
CD47 is a ubiquitously expressed membrane protein with an extracellular Ig domain and a multiple membrane-spanning domain that can synergize with antigen to induce interleukin (IL)-2 secretion by T lymphocytes. Ligation of CD47 induced actin polymerization and increased protein kinase Ctheta (PKCtheta) association with the cytoskeleton independent of antigen receptor ligation, but ligation of mutant forms of the molecule missing either the Ig domain or the multiple membrane-spanning domain did not. Simultaneous ligation of CD47 and CD3 led to additive effects on F-actin and synergistic effects on PKCtheta cytoskeletal association. Disruption of membrane rafts by removal of cholesterol with cyclodextrin blocked CD47-induced actin polymerization, and mutant forms of CD47 that localized poorly to rafts failed to effect cytoskeletal rearrangement. However, raft association alone was not sufficient, because a raft-localized CD47 Ig domain bound to the membrane by a glycan phosphoinositol anchor was unable to induce actin polymerization. A mutant form of CD47 without its Ig domain that did not induce actin polymerization or localize to rafts still enhanced T cell receptor (TCR)-dependent tyrosine phosphorylation of PLCgamma and associated Ca(2+) signaling but did not augment IL-2 secretion. Thus, CD47 synergy with TCR to increase [Ca(2+)](i) is independent of actin and rafts but is insufficient to explain CD47 cooperation with TCR in IL-2 synthesis. Full synergy with TCR requires CD47 localization to membrane rafts where ligation leads to TCR-independent signals causing actin polymerization and PKCtheta translocation.  相似文献   

3.
E-selectin, an endothelial cell surface adhesion receptor for leukocytes, also acts as a signaling receptor. Upon multivalent ligation, E-selectin transduces outside-in signals into the endothelium leading to changes in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase signaling pathway. In addition, following leukocyte engagement, E-selectin associates via its cytoplasmic domain with components of the actin cytoskeleton and undergoes alterations in phosphorylation state that result in changes in gene expression. In this study, we show that E-selectin is localized in cholesterol-rich lipid rafts at the cell surface, and that upon ligation E-selectin clusters and redistributes in the plasma membrane colocalizing with a fraction of caveolin-1-containing rafts. In addition, we demonstrate that leukocyte adhesion via E-selectin results in association with and activation of phospholipase Cgamma (PLCgamma). Moreover, we show that disruption of lipid rafts with the cholesterol-depleting drug methyl-beta-cyclodextrin disrupts the raft localization of E-selectin as well as the ligation-induced association of E-selectin with PLCgamma, and subsequent tyrosine phosphorylation of PLCgamma. In contrast, cholesterol depletion has no effect on E-selectin-dependent mitogen-activated protein kinase activation. Thus, these findings demonstrate that the presence of E-selectin in lipid rafts is necessary for its association with, and activation of, PLCgamma, and suggest that this subcellular localization of E-selectin is related to its signaling function(s) during leukocyte-endothelial interactions.  相似文献   

4.
The endogenous Ca(2+)-inhibitable adenylyl cyclase type VI of C6-2B glioma cells is regulated only by capacitative Ca(2+) entry and not by a substantial elevation of [Ca(2+)](i) from either intracellular stores or via ionophore-mediated Ca(2+) entry (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). The present studies explored the role of cholesterol-rich domains in maintaining this functional association. The cholesterol-binding agent, filipin, profoundly inhibited adenylyl cyclase activity. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin did not affect forskolin-stimulated adenylyl cyclase activity and did not affect capacitative Ca(2+) entry. However, cholesterol depletion completely ablated the regulation of adenylyl cyclase by capacitative Ca(2+) entry. Repletion of cholesterol restored the sensitivity of adenylyl cyclase to capacitative Ca(2+) entry. Adenylyl cyclase catalytic activity and immunoreactivity were extracted into buoyant caveolar fractions with Triton X-100. The presence of adenylyl cyclase in such structures was eliminated by depletion of plasma membrane cholesterol. Altogether, these data lead us to conclude that adenylyl cyclase must occur in cholesterol-rich domains to be susceptible to regulation by capacitative Ca(2+) entry. These findings are the first indication of regulatory significance for the localization of adenylyl cyclase in caveolae.  相似文献   

5.
The constitutive/inducible association of the T cell receptor (TCR) with isolated detergent-resistant, lipid raft-derived membranes has been studied in Jurkat T lymphocytes. Membranes resistant to 1% Triton X-100 contained virtually no CD3epsilon, part of the TCR complex, irrespective of cell stimulation. On the other hand, membranes resistant either to a lower Triton X-100 concentration (i.e. 0.2%) or to the less hydrophobic detergent Brij 58 (1%) contained (i) a low CD3epsilon amount (approximate 2.7% of total) in resting cells and (ii) a several times higher amount of the TCR component, after T cell stimulation with either antigen-presenting cells or with phytohemagglutinin. It appeared that CD3/TCR was constitutively associated with and recruited to a raft-derived membrane subset because (i) all three membrane preparations contained a similar amount of the raft marker tyrosine kinase Lck but no detectable amounts of the conventional membrane markers, CD45 phosphatase and transferrin receptor; (ii) a larger amount of particulate membranes were resistant to solubilization with 0.2% Triton X-100 and Brij 58 than to solubilization with 1% Triton X-100; and (iii) higher cholesterol levels were present in membranes resistant to either the lower Triton X-100 concentration or to Brij 58, as compared with those resistant to 1% Triton X-100. The recruitment of CD3 to the raft-derived membrane subset appeared (i) to occur independently of cell signaling events, such as protein-tyrosine phosphorylation and Ca(2+) mobilization/influx, and (ii) to be associated with clustering of plasma membrane rafts induced by multiple cross-linking of either TCR or the raft component, ganglioside GM(1). We suggest that during T cell stimulation a lateral reorganization of rafts into polarized larger domains can determine the recruitment of TCR into these domains, which favors a polarization of the signaling cascade.  相似文献   

6.
The mechanism of Ca(2+) influx in nonexcitable cells is not known yet. According to the capacitative hypothesis, Ca(2+) influx is triggered by IP(3)-mediated Ca(2+) release from the intracellular Ca(2+) stores. Conversely, many workers have reported a lack of association between release and influx. In this work, the role of diacylglycerol (DAG) as the mediator of T-cell receptor (TCR)-driven Ca(2+) influx in T cells was investigated. Stimulation of mouse splenic T cells with naturally occurring DAG caused Ca(2+) entry in a dose- and time-dependent manner. Such stimulation was blocked by Ni(2+), a divalent cation known to block Ca(2+) channels. Inhibition of protein kinase C (PKC) by calphostin C did not inhibit, but slightly enhanced, the DAG-stimulated Ca(2+) entry. However, inhibition of DAG metabolism by DAG kinase and lipase inhibitors enhanced the DAG-stimulated Ca(2+) entry. DAG lipase and kinase inhibitors also enhanced the Ca(2+) entry in T cells stimulated through TCR/CD3 complex with anti-CD3 antibody. Calphostin C did not affect the anti-CD3-stimulated Ca(2+) entry. These results showed that TCR-driven Ca(2+) influx in T cells is mediated by DAG through a novel mechanism(s) independent of PKC activation.  相似文献   

7.
Lipid rafts are specialized, cholesterol-rich domains of the plasma membrane that are enriched in certain signaling proteins, including Ca(2+)-sensitive adenylyl cyclases. This restrictive localization plays a key role in the regulation of the Ca(2+)-stimulable AC8 and the Ca(2+)-inhibitable AC6 by capacitative calcium entry. Interestingly, AC7, a Ca(2+)-insensitive AC, is found in the plasma membrane but is excluded from lipid rafts (Smith, K. E., Gu, C., Fagan, K. A., Hu, B., and Cooper, D. M. F. (2002) J. Biol. Chem. 277, 6025-6031). The mechanisms governing the specific membrane targeting of adenylyl cyclase isoforms remain unknown. To address this issue, a series of chimeras were produced between the raft-targeted AC5 and the non-raft-targeted AC7, involving switching of their major domains. The AC5-AC7 chimeras were expressed in HEK 293 cells and lipid rafts were isolated from the bulk plasma membrane by either detergent-based or non-detergent-based fractionation methods. Additionally, confocal imaging was used to investigate the precise cellular targeting of the chimeras. Surprisingly, the two tandem six-transmembrane domains of AC5 were not required for localization to lipid rafts. Rather, AC5 localization depended on the complete cytoplasmic loops (C1 and C2); constructs with mixed domains were either retained in the endoplasmic reticulum or degraded. Similar conclusions are drawn for the lipid raft localization of the Ca(2+)/calmodulin-stimulable AC8; again, the C1 and C2 domains are critical. Thus, protein-protein interactions may be more important than protein-lipid interactions in targeting these calcium-sensitive enzymes to lipid rafts.  相似文献   

8.
Francisella tularensis is a pathogen optimally adapted to efficiently invade its respective host cell and to proliferate intracellularly. We investigated the role of host cell membrane microdomains in the entry of F. tularensis subspecies holarctica vaccine strain (F. tularensis live vaccine strain) into murine macrophages. F. tularensis live vaccine strain recruits cholesterol-rich lipid domains ("lipid rafts") with caveolin-1 for successful entry into macrophages. Interference with lipid rafts through the depletion of plasma membrane cholesterol, through induction of raft internalization with choleratoxin, or through removal of raft-associated GPI-anchored proteins by treatment with phosphatidylinositol phospholipase C significantly inhibited entry of Francisella and its intracellular proliferation. Lipid raft-associated components such as cholesterol and caveolin-1 were incorporated into Francisella-containing vesicles during entry and the initial phase of intracellular trafficking inside the host cell. These findings demonstrate that Francisella requires cholesterol-rich membrane domains for entry into and proliferation inside macrophages.  相似文献   

9.
Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.  相似文献   

10.
A requirement for lipid rafts in B cell receptor induced Ca(2+) flux   总被引:4,自引:0,他引:4  
Although the major biochemical events triggered by ligation of the B-cell receptor (BCR) have been well defined [1] [2], little is known about the spatio-temporal organization of BCR signaling components within the cell membrane and the mechanisms by which signaling specificity is achieved. Partitioning of signaling complexes into specialized domains in the plasma membrane may provide a mechanism for channeling specific stimuli into distinct signaling pathways. Here, we report that multiple tyrosine-phosphorylated proteins accumulate transiently upon BCR activation in detergent-insoluble membrane microdomains known as lipid rafts. We found an activation-dependent translocation to the rafts of the BCR itself, as well as phospholipase Cgamma2 (PLCgamma2), an enzyme critical for BCR-induced Ca(2+) flux in B cells. An intact raft structure was required for BCR-induced tyrosine phosphorylation of PLCgamma2 and the induction of Ca(2+) flux. Taken together, these data provide a functional role for lipid rafts in BCR signaling.  相似文献   

11.
Recent studies associate cholesterol excess and atherosclerosis with inflammation. The link between these processes is not understood, but cholesterol is an important component of lipid rafts. Rafts are thought to concentrate membrane signaling molecules and thus regulate cell signaling through G protein-coupled pathways. We used methyl beta-cyclodextrin to deplete cholesterol from polymorphonuclear neutrophil (PMN) rafts and thus study the effects of raft disruption on G protein-coupled Ca(2+) mobilization. Methyl beta-cyclodextrin had no effect on Ca(2+) store depletion by the G protein-coupled agonists platelet-activating factor or fMLP, but abolished agonist-stimulated Ca(2+) entry. Free cholesterol at very low concentrations regulated Ca(2+) entry into PMN via nonspecific Ca(2+) channels in a biphasic fashion. The specificity of cholesterol regulation for Ca(2+) entry was confirmed using thapsigargin studies. Responses to cholesterol appear physiologic because they regulate respiratory burst in a proportional biphasic fashion. Investigating further, we found that free cholesterol accumulated in PMN lipid raft fractions, promoting formation and polarization of membrane rafts. Finally, the transient receptor potential calcium channel protein TRPC1 redistributed to raft fractions in response to cholesterol. The uniformly biphasic relationships between cholesterol availability, Ca(2+) signaling and respiratory burst suggest that Ca(2+) influx and PMN activation are regulated by the quantitative relationships between cholesterol and other environmental lipid raft components. The association between symptomatic cholesterol excess and inflammation may therefore in part reflect free cholesterol- dependent changes in lipid raft structure that regulate immune cell Ca(2+) entry. Ca(2+) entry-dependent responses in other cell types may also reflect cholesterol bioavailability and lipid incorporation into rafts.  相似文献   

12.
Agonist-induced Ca(2+) entry into the pulmonary endothelium depends on activation of both store-operated Ca(2+) (SOC) entry and receptor-operated Ca(2+) (ROC) entry. We previously reported that pulmonary endothelial cell SOC entry and ROC entry are reduced in chronic hypoxia (CH)-induced pulmonary hypertension. We hypothesized that diminished endothelial Ca(2+) entry following CH is due to derangement of caveolin-1 (cav-1) containing cholesterol-enriched membrane domains important in agonist-induced Ca(2+) entry. To test this hypothesis, we measured Ca(2+) influx by fura-2 fluorescence following application of ATP (20 μM) in freshly isolated endothelial cells pretreated with the caveolar-disrupting agent methyl-β-cyclodextrin (mβCD; 10 mM). Cholesterol depletion with mβCD attenuated agonist-induced Ca(2+) entry in control endothelial cells to the level of that from CH rats. Interestingly, endothelial membrane cholesterol was lower in cells isolated from CH rats compared with controls although the density of caveolae did not differ between groups. Cholesterol repletion with a cholesterol:mβCD mixture or the introduction of the cav-1 scaffolding peptide (AP-cav; 10 μM) rescued ATP-induced Ca(2+) entry in endothelia from CH arteries. Agonist-induced Ca(2+) entry assessed by Mn(2+) quenching of fura-2 fluorescence was also significantly elevated by luminal AP-cav in pressurized intrapulmonary arteries from CH rats to levels of controls. Similarly, patch-clamp experiments revealed diminished inward current in response to ATP in cells from CH rats compared with controls that was restored by AP-cav. These data suggest that CH-induced pulmonary hypertension leads to reduced membrane cholesterol that limits the activity of ion channels necessary for agonist-activated Ca(2+) entry.  相似文献   

13.
In pancreatic beta-cells, the predominant voltage-gated Ca(2+) channel (Ca(V)1.2) and K(+) channel (K(V)2.1) are directly coupled to SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor) proteins. These SNARE proteins modulate channel expression and gating and closely associate these channels with the insulin secretory vesicles. We show that K(V)2.1 and Ca(V)1.2, but not K(V)1.4, SUR1, or Kir6.2, target to specialized cholesterol-rich lipid raft domains on beta-cell plasma membranes. Similarly, the SNARE proteins syntaxin 1A, SNAP-25, and VAMP-2, but not Munc-13-1 or n-Sec1, are associated with lipid rafts. Disruption of the lipid rafts by depleting membrane cholesterol with methyl-beta-cyclodextrin shunts K(V)2.1, Ca(V)1.2, and SNARE proteins out of lipid rafts. Furthermore, methyl-beta-cyclodextrin inhibits K(V)2.1 but not Ca(V)1.2 channel activity and enhances single-cell exocytic events and insulin secretion. Membrane compartmentalization of ion channels and SNARE proteins in lipid rafts may be critical for the temporal and spatial coordination of insulin release, forming what has been described as the excitosome complex.  相似文献   

14.
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.  相似文献   

15.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   

16.
Elevation of intracellular Ca2+ at fertilization is essential for the initiation of development in the Xenopus egg, but the pathway between sperm-egg interaction and Ca2+ release from the egg's endoplasmic reticulum is not well understood. Here we show that injection of an inhibitory antibody against the type I IP(3) receptor reduces Ca2+ release at fertilization, indicating that the Ca2+ release requires IP(3). We then examine how IP(3) production is initiated. Xenopus eggs were injected with specific inhibitors of the activation of two phospholipase C isoforms, PLCgamma and PLCbeta. The Src-homology 2 (SH2) domains of PLCgamma were used to inhibit SH2-mediated activation of PLCgamma, and an antibody against G(q) family G-proteins was used to inhibit G(q)-mediated activation of PLCbeta. Though the PLCgamma SH2 domains inhibited platelet-derived growth factor (PDGF)-induced Ca2+ release in eggs with exogenously expressed PDGF receptors, they did not inhibit the Ca2+ rise at fertilization. Similarly, the G(q) family antibody blocked serotonin-induced Ca2+ release in eggs with exogenously expressed serotonin 2C receptors, but not the Ca2+ rise at fertilization. A mixture of PLCgamma SH2 domains and the G(q) antibody also did not inhibit the Ca2+ rise at fertilization. These results indicate that Ca2+ release at fertilization of Xenopus eggs requires type I IP(3)-gated Ca2+ channels, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta.  相似文献   

17.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

18.
19.
Recovery from swelling of hepatocytes and selected other epithelia is triggered by intracellular Ca(2+) release from the endoplasmic reticulum, which leads to fluid and electrolyte efflux through volume-sensitive K(+) and Cl(-) channels. The aim of this study was to determine the mechanisms responsible for swelling-mediated hepatocellular Ca(2+) mobilization. Swelling of HTC rat hepatoma cells, evoked by exposure to hypotonic medium, elicited transient increases in intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and cytosolic [Ca(2+)]. The latter was attenuated by inhibition of phospholipase C (PLC) with and by IP(3) receptor blockade with 2-aminoethoxydiphenyl borate, but it was unaffected by ryanodine, an inhibitor of intracellular Ca(2+)-induced Ca(2+) release channels. Hypotonic swelling was associated with a transient increase in tyrosine phosphorylation of PLCgamma, with kinetics that paralleled the increases in intracellular IP(3) levels and cytosolic [Ca(2+)]. Confocal imaging of HTC cells exposed to hypotonic medium revealed a swelling-induced association of tyrosine-phosphorylated PLCgamma with the plasma membrane. These findings suggest that activation of PLCgamma by hepatocellular swelling leads to the generation of IP(3) and stimulates discharge of Ca(2+) from the endoplasmic reticulum via activation of IP(3) receptors. By extension, these data support the concept that tyrosine phosphorylation of PLCgamma represents a critical step in adaptive responses to hepatocellular swelling.  相似文献   

20.
Neutral sphingomyelinases (SMases) are involved in the induction of ceramide-mediated proapoptotic signaling under heat stress conditions. Although ceramide is an important mediator of apoptosis, the neutral SMase that is activated under heat stress has not been identified. In this study, we cloned an Mg(2+)-dependent neutral SMase from a zebrafish embryonic cell cDNA library using an Escherichia coli expression-cloning vector. Screening of the clones using an SMase activity assay with C(6)-7-nitro-2-1,3-benzoxadiazol-4-yl-sphingomyelin as the substrate resulted in the isolation of one neutral SMase cDNA clone. This cDNA encoded a polypeptide of 420 amino acids (putative molecular weight: 46,900) containing two predicted transmembrane domains in its C-terminal region. The cloned neutral SMase 1 acted as a mediator of stress-induced apoptosis. Bacterially expressed recombinant neutral SMase 1 hydrolyzed [choline-methyl-(14)C]sphingomyelin optimally at pH 7.5 in the presence of an Mg(2+) ion. In zebrafish embryonic cells, the endogenous SMase enzyme was localized in the microsomal fraction. In FLAG-tagged SMase-overexpressing cells, neutral SMase 1 colocalized with a Golgi marker in a cytochemical analysis. Inactivation of the enzyme by an antisense phosphorothioate oligonucleotide repressed the induction of ceramide generation, caspase-3 activation, and apoptotic cell death by heat stress. Thus, neutral SMase 1 participates in an inducible ceramide-mediating, proapoptotic signaling pathway that operates in heat-induced apoptosis in zebrafish embryonic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号