首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Recently we found that visual arrestin binds microtubules and that this interaction plays an important role in arrestin localization in photoreceptor cells. Here we use site-directed mutagenesis and spin labeling to explore the molecular mechanism of this novel regulatory interaction. The microtubule binding site maps to the concave sides of the two arrestin domains, overlapping with the rhodopsin binding site, which makes arrestin interactions with rhodopsin and microtubules mutually exclusive. Arrestin interaction with microtubules is enhanced by several "activating mutations" and involves multiple positive charges and hydrophobic elements. The comparable affinity of visual arrestin for microtubules and unpolymerized tubulin (K(D) > 40 mum and >65 mum, respectively) suggests that the arrestin binding site is largely localized on the individual alphabeta-dimer. The changes in the spin-spin interaction of a double-labeled arrestin indicate that the conformation of microtubule-bound arrestin differs from that of free arrestin in solution. In sharp contrast to rhodopsin, where tight binding requires an extended interdomain hinge, arrestin binding to microtubules is enhanced by deletions in this region, suggesting that in the process of microtubule binding the domains may move in the opposite direction. Thus, microtubule and rhodopsin binding induce different conformational changes in arrestin, suggesting that arrestin assumes three distinct conformations in the cell, likely with different functional properties.  相似文献   

2.
Ascano M  Robinson PR 《Biochemistry》2006,45(7):2398-2407
Deactivation of the vertebrate photopigment rhodopsin is achieved through a two-step process. Rhodopsin is first phosphorylated by rhodopsin kinase and subsequently deactivated by the binding of the regulatory protein arrestin or its splice variant, p44. Although much is known about the overall differences between arrestin and p44 binding to different rhodopsin species (photolyzed versus unphotolyzed and/or phosphorylated versus unphosphorylated), the exact role of p44 during phototransduction remains to be fully elucidated. Our current study addresses this question by identifying structural differences between arrestin and p44 and characterizing the interaction between the negatively charged rhodopsin tail and either p44 or arrestin. Our results demonstrate that arrestin and p44 bind differently to different phosphorylated rhodopsin species and that this may be due to a structural difference between p44's and arrestin's basal states. This difference offers a potential regulatory mechanism that could regulate p44 and arrestin binding and, as a result, regulate the kinetics of the rod's light response.  相似文献   

3.
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion.  相似文献   

4.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

5.
The inactivation of photolyzed rhodopsin requires phosphorylation of the receptor and binding of a 48-kDa regulatory protein, arrestin. By binding to phosphorylated photolyzed rhodopsin, arrestin inhibits G protein (Gt) activation and blocks premature dephosphorylation, thereby preventing the reentry of photolyzed rhodopsin into the phototransduction pathway. In this study, we isolated a 44-kDa form of arrestin, called p44, from fresh bovine rod outer segments and characterized its structure and function. A partial primary structure of p44 was established by a combination of mass spectrometry and automated Edman degradation of proteolytic peptides. The amino acid sequence was found to be identical with arrestin, except that the C-terminal 35 residues (positions 370-404) are replaced by a single alanine. p44 appeared to be generated by alternative mRNA splicing, because intron 15 interrupts within the nucleotide codon for 369Ser in the arrestin gene. Functionally, p44 binds avidly to photolyzed or phosphorylated and photolyzed rhodopsin. As a consequence of its relatively high affinity for bleached rhodopsin, p44 blocks Gt activation. The binding characteristics of p44 set it apart from tryptic forms of arrestin (truncated at the N- and C-termini), which require phosphorylation of rhodopsin for tight binding. We propose that p44 is a novel splice variant of arrestin that could be involved in the regulation of Gt activation.  相似文献   

6.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

7.
Regulation of arrestin binding by rhodopsin phosphorylation level   总被引:1,自引:0,他引:1  
Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically relevant functional forms of rhodopsin: light-activated and dark phosphorhodopsin and phospho-opsin. We found that a single receptor-attached phosphate does not facilitate arrestin binding, two are necessary to induce high affinity interaction, and three phosphates fully activate arrestin. Higher phosphorylation levels do not increase the stability of arrestin complex with light-activated rhodopsin but enhance its binding to the dark phosphorhodopsin and phospho-opsin. The complex of arrestin with hyperphosphorylated light-activated rhodopsin is less sensitive to high salt and appears to release retinal faster. These data suggest that arrestin likely quenches rhodopsin signaling after the third phosphate is added by rhodopsin kinase. The complex of arrestin with heavily phosphorylated rhodopsin, which appears to form in certain disease states, has distinct characteristics that may contribute to the phenotype of these visual disorders.  相似文献   

8.
Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin   总被引:5,自引:0,他引:5  
Raman D  Osawa S  Weiss ER 《Biochemistry》1999,38(16):5117-5123
The binding of arrestin to rhodopsin is a multistep process that begins when arrestin interacts with the phosphorylated C terminus of rhodopsin. This interaction appears to induce a conformational change in arrestin that exposes a high-affinity binding site for rhodopsin. Several studies in which synthetic peptides were used have suggested that sites on the rhodopsin cytoplasmic loops are involved in this interaction. However, the precise amino acids on rhodopsin that participate in this interaction are unknown. This study addresses the role of specific amino acids in the cytoplasmic loops of rhodopsin in binding arrestin through the use of site-directed mutagenesis and direct binding assays. A series of alanine mutants within the three cytoplasmic loops of rhodopsin were expressed in HEK-293 cells, reconstituted with 11-cis-retinal, prephosphorylated with rhodopsin kinase, and examined for their ability to bind in vitro-translated, 35S-labeled arrestin. Mutations at Asn-73 in loop I as well as at Pro-142 and Met-143 in loop II resulted in dramatic decreases in the level of arrestin binding, whereas the level of phosphorylation by rhodopsin kinase was similar to that of wild-type rhodopsin. The results indicate that these amino acids play a significant role in arrestin binding.  相似文献   

9.
Arrestins play a key role in the homologous desensitization of G protein-coupled receptors (GPCRs). These cytosolic proteins selectively bind to the agonist-activated and GPCR kinase-phosphorylated forms of the GPCR, precluding its further interaction with the G protein. Certain mutations in visual arrestin yield "constitutively active" proteins that bind with high affinity to the light-activated form of rhodopsin without requiring phosphorylation. The crystal structure of visual arrestin shows that these activating mutations perturb two groups of intramolecular interactions that keep arrestin in its basal (inactive) state. Here we introduced homologous mutations into arrestin2 and arrestin3 and found that the resulting mutants bind to the beta(2)-adrenoreceptor in vitro in a phosphorylation-independent fashion. The same mutants effectively desensitize both the beta(2)-adrenergic and delta-opioid receptors in the absence of receptor phosphorylation in Xenopus oocytes. Moreover, the arrestin mutants also desensitize the truncated delta-opioid receptor from which the C terminus, containing critical phosphorylation sites, has been removed. Conservation of the phosphate-sensitive hot spots in non-visual arrestins suggests that the overall fold is similar to that of visual arrestin and that the mechanisms whereby receptor-attached phosphates drive arrestin transition into the active binding competent state are conserved throughout the arrestin family of proteins.  相似文献   

10.
Cdk5 and its neuronal activator p35 play an important role in neuronal migration and proper development of the brain cortex. We show that p35 binds directly to alpha/beta-tubulin and microtubules. Microtubule polymers but not the alpha/beta-tubulin heterodimer block p35 interaction with Cdk5 and therefore inhibit Cdk5-p35 activity. p25, a neurotoxin-induced and truncated form of p35, does not have tubulin and microtubule binding activities, and Cdk5-p25 is inert to the inhibitory effect of microtubules. p35 displays strong activity in promoting microtubule assembly and inducing formation of microtubule bundles. Furthermore, microtubules stabilized by p35 are resistant to cold-induced disassembly. In cultured cortical neurons, a significant proportion of p35 localizes to microtubules. When microtubules were isolated from rat brain extracts, p35 co-assembled with microtubules, including cold-stable microtubules. Together, these findings suggest that p35 is a microtubule-associated protein that modulates microtubule dynamics. Also, microtubules play an important role in the control of Cdk5 activation.  相似文献   

11.
A distinguishing feature of rod arrestin is its ability to form oligomers at physiological concentrations. Using visible light scattering, we show that rod arrestin forms tetramers in a cooperative manner in solution. To investigate the structure of the tetramer, a nitroxide side chain (R1) was introduced at 18 different positions. The effects of R1 on oligomer formation, EPR spectra, and inter-spin distance measurements all show that the structures of the solution and crystal tetramers are different. Inter-subunit distance measurements revealed that only arrestin monomer binds to light-activated phosphorhodopsin, whereas both monomer and tetramer bind microtubules, which may serve as a default arrestin partner in dark-adapted photoreceptors. Thus, the tetramer likely serves as a 'storage' form of arrestin, increasing the arrestin-binding capacity of microtubules while readily dissociating to supply active monomer when it is needed to quench rhodopsin signaling.  相似文献   

12.
Visual arrestin plays an important role in regulating light responsiveness via its ability to specifically bind to the phosphorylated and light-activated form of rhodopsin. To further characterize rhodopsin/arrestin interactions we have utilized a rabbit reticulocyte lysate translation system to synthesize bovine visual arrestin. The translated arrestin (404 amino acids) was demonstrated to be fully functional in terms of its ability to specifically recognize and bind to phosphorylated light-activated rhodopsin (P-Rh*). Competitive binding studies revealed that the in vitro synthesized arrestin and purified bovine visual arrestin had comparable affinities for P-Rh*. In an effort to assess the functional role of different regions of the arrestin molecule, two truncated arrestin mutants were produced by cutting within the open reading frame of the bovine arrestin cDNA with selective restriction enzymes. In vitro translation of the transcribed truncated mRNAs resulted in the production of arrestins truncated from the carboxyl terminus. The ability of each of the mutant arrestins to bind to dark (Rh), light-activated (Rh*), dark phosphorylated (P-Rh), and light-activated phosphorylated rhodopsin were then compared. Arrestin lacking 39 carboxyl-terminal residues binds specifically not only to P-Rh* but also to Rh* and P-Rh. This suggests that the carboxyl-terminal domain of arrestin plays an important regulatory role in ensuring strict arrestin binding selectivity to P-Rh*. Arrestin that has only the first 191 amino-terminal residues predominately discriminates the phosphorylation state of the rhodopsin; however, it also retains some binding specificity for the activation state. These results suggest that the amino-terminal half of arrestin contains key rhodopsin recognition sites responsible for interaction with both the phosphorylated and light-activated forms of rhodopsin.  相似文献   

13.
To elucidate the quenching mechanism of phototransduction in vertebrate cone photoreceptors, a cDNA clone encoding cone specific arrestin (cArr) was isolated from a bovine retinal cDNA library using a human cArr cDNA probe. Affinity-purified anti-peptide antibody specific to cArr was prepared. Immunohistochemical staining displayed specific labeling of cArr in cone photoreceptors and immunoblotting identified a 46 kDa protein band. We purified cArr from bovine retinas by sequential column chromatography using DEAE-cellulose, gel filtration and mono Q columns. Binding studies revealed no binding of cArr to rhodopsin regardless of whether it was bleached and/or phosphorylated. cArr also failed to bind to heparin-Sepharose under conditions which rod arrestin (rArr) bound to the column. The present data suggest that cArr may play a role in the quenching of phototransduction in cone photoreceptors and that its activity therein is different to that of rArr.  相似文献   

14.
Proteins involved in the visual signaling cascade show light-dependent expression levels in photoreceptor cells. Recently, these proteins have been described to be expressed in neuroectodermal tumors and to function as cancer-retina antigens. Here, we show that light can down-regulate gene expression of rhodopsin, transducin, and cyclic guanosine 3',5'-monophosphate phosphodiesterase 6 (PDE6) and up-regulate guanylyl cyclase 1, recoverin, and arrestin in human melanoma cells in vitro, comparable to physiologic changes earlier observed in photoreceptor cells. Similar modulation can be detected at the protein level in melanoma cells except for no changes in PDE6 protein levels. Two regulatory pathways have been identified: Sp1/Sp3/Sp4 proteins for rhodopsin and PDE6, and mitogen-activated protein kinases for recoverin and arrestin. The visual cascade and retinoic acid as its derivate do not play any role in this process. Putative explanations for light-dependent modulation of cancer-retina antigen expression in melanoma cells are discussed.  相似文献   

15.
The deactivation of the bovine G-protein-coupled receptor, rhodopsin, is a two-step process consisting of the phosphorylation of specific serine and threonine residues in the cytoplasmic tail of rhodopsin by rhodopsin kinase. Subsequent binding of the regulatory protein arrestin follows this phosphorylation. Previous results find that at least three phosphorylatable sites on the rhodopsin tail (T340) and at least two of the S338, S334, or S343 sites are needed for complete arrestin-mediated deactivation. Thus, to elucidate the details of the interaction between rhodopsin with arrestin, we have employed both a computational and an in vitro experimental approach. In this work, we first simulated the interaction of the carboxy tail of rhodopsin with arrestin using a Monte Carlo simulated annealing method. Since at this time phosphorylation of specific serines and threonines is not possible in our simulations, we substitute either aspartic or glutamic acid residues for the negatively charged phosphorylated residues required for binding. A total of 17 simulations were performed and analysis of this shows specific charge-charge interactions of the carboxy tail of rhodopsin with arrestin. We then confirmed these computational results with assays of comparable constructed rhodopsin mutations using our in vitro assay. This dual computational/experimental approach indicates that sites S334, S338, and T340 in rhodopsin and K14 and K15 on arrestin are indeed important in the interaction of rhodopsin with arrestin, with a possible weaker S343 (rhodopsin)/K15 (arrestin) interaction.  相似文献   

16.
G-protein-coupled receptor signaling is terminated by arrestin proteins that preferentially bind to the activated phosphorylated form of the receptor. Arrestins also bind active unphosphorylated and inactive phosphorylated receptors. Binding to the non-preferred forms of the receptor is important for visual arrestin translocation in rod photoreceptors and the regulation of receptor signaling and trafficking by non-visual arrestins. Given the importance of arrestin interactions with the various functional forms of the receptor, we performed an extensive analysis of the receptor-binding surface of arrestin using site-directed mutagenesis. The data indicated that a large number of surface charges are important for arrestin interaction with all forms of the receptor. Arrestin elements involved in receptor binding are differentially engaged by the various functional forms of the receptor, each requiring a unique subset of arrestin residues in a specific spatial configuration. We identified several additional phosphate-binding elements in the N-domain and demonstrated for the first time that the active receptor preferentially engages the arrestin C-domain. We also found that the interdomain contact surface is important for arrestin interaction with the non-preferred forms of the receptor and that residues in this region play a role in arrestin transition into its high affinity receptor binding state.  相似文献   

17.
Truncation mutations in the adenomatous polyposis coli protein (APC) are responsible for familial polyposis, a form of inherited colon cancer. In addition to its role in mediating beta-catenin degradation in the Wnt signaling pathway, APC plays a role in regulating microtubules. This was suggested by its localization to the end of dynamic microtubules in actively migrating areas of cells and by the apparent correlation between the dissociation of APC from polymerizing microtubules and their subsequent depolymerization [1, 2]. The microtubule binding domain is deleted in the transforming mutations of APC [3, 4]; however, the direct effect of APC protein on microtubules has never been examined. Here we show that binding of APC to microtubules increases microtubule stability in vivo and in vitro. Deleting the previously identified microtubule binding site from the C-terminal domain of APC does not eliminate its binding to microtubules but decreases the ability of APC to stabilize them significantly. The interaction of APC with microtubules is decreased by phosphorylation of APC by GSK3 beta. These data confirm the hypothesis that APC is involved in stabilizing microtubule ends. They also suggest that binding of APC to microtubules is mediated by at least two distinct sites and is regulated by phosphorylation.  相似文献   

18.
Deactivation of G-protein-coupled receptors relies on a timely blockade by arrestin. However, under dim light conditions, virtually all arrestin is in the rod inner segment, and the splice variant p(44) (Arr(1-370A)) is the stop protein responsible for receptor deactivation. Using size exclusion chromatography and biophysical assays for membrane-bound protein-protein interaction, membrane binding, and G-protein activation, we have investigated the interactions of Arr(1-370A) and proteolytically truncated Arr(3-367) with rhodopsin. We find that these short arrestins do not only interact with the phosphorylated active receptor but also with inactive phosphorylated rhodopsin or opsin in membranes or solution. Because of the latter interaction they are not soluble (like arrestin) but membrane-bound in the dark. Upon photoexcitation, Arr(3-367) and Arr(1-370A) interact with prephosphorylated rhodopsin faster than arrestin and start to quench G(t) activation on a subsecond time scale. The data indicate that in the course of rhodopsin deactivation, Arr(1-370A) is handed over from inactive to active phosphorylated rhodopsin. This mechanism could provide a new aspect of receptor shutoff in the single photon operating range of the rod cell.  相似文献   

19.
Arrestin binding to rhodopsin is one of the major mechanisms of termination of photoresponses in both vertebrates and invertebrates. Here we report the cDNA cloning and characterization of a 48-kDa visual arrestin from squid (Loligo pealei). The cDNA encoded a protein that had 56-64% amino acid sequence similarity to reported arrestin sequences. This protein does not encode any distinct modular domains but contains five fingerprint regions that have been identified within arrestins. Antibodies raised to the recombinant arrestin protein detected arrestin expression only in the eye and recognized a doublet in photoreceptor membranes, representing unphosphorylated and phosphorylated arrestin. In squid eye membranes, arrestin was phosphorylated in a Ca2+-dependent manner and this phosphorylation was inhibited by antibodies raised against squid rhodopsin kinase, but not by inhibitors of protein kinase C or calmodulin kinase. Addition of purified squid rhodopsin kinase to washed rhabdomeric membranes resulted in phosphorylation of rhodopsin, and arrestin was also phosphorylated when calcium was present. This is the first report of a rhodopsin kinase phosphorylating an arrestin substrate, and suggests a dual role for this kinase in the inactivation of the squid visual system.  相似文献   

20.
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号