首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDHase) is encoded by four genes designated gpd-1 through gpd-4 in the nematode Caenorhabditis elegans. gpd-1 has been isolated and sequenced, and is shown here to have a nearly identical copy (gpd-4) with respect to coding and regulatory flanking sequence information as well as to the placement of its two introns. Both genes, which are separated by 250,000 to 300,000 base-pairs were assigned to chromosome II by in situ hybridization and physically linked to a DNA polymorphism located near unc-4 on the genetic map. The genes gpd-2 and gpd-3 are also nearly identical with each other but differ from the gpd-1 and gpd-4 pair with respect to the positions of their two introns and a cluster of amino acid changes within the amino-terminal region of the enzyme. Furthermore, one gene from each pair (gpd-4 and gpd-2) exhibits a single amino acid substitution at positions heretofore known to be conserved in all other systems so far examined including the extreme thermophiles. gpd-2 and gpd-3 are organized as a direct tandem repeat separated by only 244 base-pairs. They have been assigned to an 85,200 base-pair contig that maps to the left end of the X chromosome. The absence of gpd-3 from C. elegans var. Bergerac was used as a marker to map the gpd-2,3 gene pair near unc-20. Northern analyses have shown that gpd-1 and gpd-4 are preferentially expressed in embryos, while the expression of gpd-2 and gpd-3 increases during postembryonic development. These analyses indicate that the gpd-1,4 gene pair encodes the minor isoenzyme, GAPDHase-1, present in all cells of the nematode while the other gene pair (gpd-2,3) encodes the major isoenzyme, GAPDHase-2, preferentially expressed in the bodywall muscle. The G + T-rich and T-rich regions essential for vertebrate beta-globin polyadenylation were also observed for gpd-3.  相似文献   

2.
T L Smith  S A Leong 《Gene》1990,93(1):111-117
The complete nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the corn smut fungus Ustilago maydis is reported. The gene encodes a 337-amino acid protein, parts of which show sequence identity to corresponding regions of GAPDH-encoding genes from other organisms. A single, putative 407-bp intron interrupts the tenth codon. Codon usage is highly biased for codons ending in cytosine.  相似文献   

3.
4.
Classical phenotypic and biochemical testing do not lead to correct identification of the distinct Staphylococcus species. Therefore, the aim of our study was to develop a method for the reliable and accurate determination of distinct Staphylococcus species.

In the present study, the 931–934-bp partial sequences of the glyceraldehyde-3-phosphate dehydrogenase-encoding (gap) gene of 28 validly described Staphylococcus species were amplified and sequenced. By using the respective sequence information we performed a terminal-restriction fragment length polymorphism (T-RFLP) analysis. For T-RFLP the partial gap gene was amplified with double-fluorescently labelled primers and digested with the restriction enzymes DdeI, BspHI and TaqI. Distinctive T-RFLP patterns were rendered by the use of capillary electrophoresis with laser-induced fluorescence detection. This molecular method allowed us to identify all 28 Staphylococcus species with high specificity. This was validated by analysis of 34 Staphylococcus epidermidis and 28 Staphylococcus haemolyticus isolates.

These results demonstrate the feasibility and applicability of the T-RFLP method based on the partial gap gene sequences for rapid and accurate species identification.  相似文献   


5.
6.
The isolation and genomic sequence of one of possibly four glyceraldehyde-3-phosphate dehydrogenase genes in the nematode, Caenorhabditis elegans is presented. The complete nucleotide sequence of the coding as well as the noncoding flanking regions of this gene has been determined. The deduced amino-acid sequence agrees with the sequence of typical glyceraldehyde-3-phosphate dehydrogenase enzymes and its molecular weight of 36,235 agrees with its size determined previously (Yarbrough, P. and Hecht, R. (1984) J. Biol. Chem. 259, 14711-14720). That this isolated gene encodes a nematode glyceraldehyde-3-phosphate dehydrogenase is additionally confirmed by demonstrating its immunoreactivity to an anti-nematode glyceraldehyde-3-phosphate dehydrogenase antibody after its expression as a fusion protein with dihydrofolate reductase. Codon utilization follows a pattern typical of other expressed nematode genes. The gene is split by two introns that are highly conserved in comparison to other introns observed in C. elegans. The placement of one of these introns is conserved with respect to the chicken glyceraldehyde-3-phosphate dehydrogenase gene. Within the 5' flanking sequence homology to actin and the homology 2 block of the major myosin gene (unc-54) is noted. It is of interest that the 3' flanking region contains a CAAAT box, followed by a TATAAT box, before an open reading frame of a closely linked gene that also contains a small AT-rich intron with the nematode consensus splice junction.  相似文献   

7.
8.
9.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

10.
11.
Utilizing yeast strains containing insertion mutations in each of the three glyceraldehyde-3-phosphate dehydrogenase structural genes, the level of expression of each gene was determined in logarithmically growing cells. The contribution of the TDH1, TDH2, and TDH3 gene products to the total glyceraldehyde-3-phosphate dehydrogenase activity in wild type cells is 10-15, 25-30, and 50-60%, respectively. The relative proportions of expression of each gene is the same in cells grown in the presence of glucose or ethanol as carbon source although the total glyceraldehyde-3-phosphate dehydrogenase activity in cells grown in the presence of glucose is 2-fold higher than in cells grown on ethanol. The polypeptides encoded by each of the structural genes were identified by two-dimensional polyacrylamide gel electrophoresis. The TDH3 structural gene encodes two resolvable forms of glyceraldehyde-3-phosphate dehydrogenase which differ by their net charge. The apparent specific activity of glyceraldehyde-3-phosphate dehydrogenase encoded by the TDH3 structural gene is severalfold lower than the enzymes encoded by TDH1 or TDH2. The polypeptides encoded by the TDH2 or TDH3 structural genes form catalytically active homotetramers. The apparent Vmax for the homotetramer encoded by TDH3 is 2-3-fold lower than the homotetramer encoded by TDH2. Evidence is presented that isozymes of glyceraldehyde-3-phosphate dehydrogenase exist in yeast cells, however, the number of different isozymes formed was not established. These data confirm that the three yeast glyceraldehyde-3-phosphate dehydrogenase genes encode catalytically active enzyme and that the genes are expressed at different levels during logarithmic cell growth.  相似文献   

12.
Aamodt E  Shen L  Marra M  Schein J  Rose B  McDermott JB 《Gene》2000,243(1-2):67-74
The Caenorhabditis briggsae homologue of the Caenorhabditis elegans pag-3 gene was cloned and sequenced. When transformed into a C. elegans pag-3 mutant, the C. briggsae pag-3 gene rescued the pag-3 reverse kinker and lethargic phenotypes. The C. elegans pag-3 gene fused to lacZ was expressed in the same pattern in C. elegans and C. briggsae. Unlike many gene homologues compared between C. elegans and C. briggsae, extensive sequence conservation was found in the non-coding regions upstream of the pag-3 exons, in several of the introns and in the downstream non-coding region. Furthermore, the splice acceptor and splice donor sites were conserved, and the size of the introns and exons was surprisingly similar. The predicted protein sequence of C. briggsae PAG-3 was 85% identical to the protein sequence of C. elegans PAG-3. Because so much of the non-coding region of pag-3 was conserved, the control of pag-3 may be quite complex, involving the binding of many trans-acting factors. These results suggest the evolutionary conservation of the pag-3 gene sequence, its expression and function.  相似文献   

13.
14.
15.
16.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

17.
Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans.  相似文献   

18.
19.
A Varma  K J Kwon-Chung 《Gene》1999,232(2):155-163
The GPD gene encoding glyceraldehyde-3-phosphate dehydrogenase was isolated from Cryptococcus neoformans, a heterobasidiomycetous yeast that is pathogenic to humans. The gene contains 11 introns, differing from the conserved intron positions found in the GPD genes of Basidiomycetes. The predicted amino-acid sequence of this gene is extremely similar to that reported from GPD proteins of other basidiomycetes. The promoter region of the C. neoformans GPD gene was similar to those of other basidiomycetes. Plasmid constructs containing up to 1600 base pairs upstream of the native GPD open reading frame were used to express either the native URA5 gene in a ura5 mutant or the heterologous hphI gene (a bacterial gene that confers resistance to the aminoglycoside hygromycin) in a wild-type strain of C. neoformans. Transformation frequencies resulting from the plasmid-borne Gpdp::URA5 gene were at levels similar to those of the native URA5, which suggested that all the sequences necessary for proper expression were present. Transformation frequencies using the Gpdp::hphI gene constructs were poor. However, addition of DNA sequences flanking the 3'-end of an native C. neoformans gene significantly improved the transformation frequencies resulting from the expression of the heterologous hphI gene.  相似文献   

20.
The yields in molecules per 100 eV for active-site and sulphydryl loss from glyceraldehyde-3-phosphate dehydrogenase have been determined in nitrous-oxide-saturated, aerated and argon-saturated solutions. Molecular hydrogen peroxide produces a sulphenic acid product, which can be repaired by post-irradiation treatment with dithiothreitol. Comparison of the yields under various conditions showed that in aerated solutions both .OH and .O2-radicals inactivated the enzyme with an efficiency of about 26 per cent. However, the efficiency of .OH in air-free solutions was less, and inactivation by .H and eaq- did not appear to be appreciable. There is a correlation between SH loss and loss of active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号