首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of researchers have suggested that polyculture is characteristic of native tropical forest swiddens and have adduced theory from community ecology to account for its adaptiveness. Ye'kwana and Yanomamö swidden cultivation is examined, and it is shown that polyculture is not practiced to any significant degree. Instead, the concept of polyvariety is introduced along with a number of other cultivation practices that more simply account for the adaptiveness of Ye'kwana and Yanomamö gardening. In addition, comparative data from other parts of the tropical world indicate that polyculture is no more common than monoculture and recent advances in ecological research indicate that the diversity-stability hypothesis that underpins adaptive arguments of polyculture is in need of drastic revision.  相似文献   

2.
The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping and two monoculture systems. The first intercrop was maize and beans (CORNCOWP), and the second intercrop was cassava, pigeon peas and beans (CASPIGPCOWP). The first monoculture was beans, and the second was passion fruit. The intercropping soils showed a higher capacity to suppress black root rot in cassava than the monoculture because such soils were able to reduce disease severity by about 50%. Bean soil in the monoculture showed less microbial biomass carbon than in the intercrop, with means of 10.05 and 38.2 mg/kg, respectively. The higher density of bacteria and fungal populations, microbial biomass, urease and arylsulphatase activities correlated with a decrease in disease severity. Soils from the intercrops produced changes in soil quality, primarily in the population and density of microorganisms, enzymatic activities, total organic carbon and nutrients, reducing disease severity in cassava plants. These effects were validated by multivariate principal component analysis and showed three distinct groups: one FOR, one intercropping and one monocropping. The majority of vectors were in the direction of FOR and intercropping soils. We have provided some of the first data related to the beneficial effects of intercropping on the suppression of black root rot in cassava, which is validated through different attributes.  相似文献   

3.
Secondary succession in tropical deciduous forest is often characterized by vegetative reproduction, or coppicing. Coppicing is also observed in forest sites that are disturbed by farming activity. This observation raises questions about the role of established management practices in determining the succession of vegetation on farmsites once they are abandoned to fallow. To what extent is the coppicing succession the result of specific aspects of swidden farming technology and management? And what variations in coppice successions occur in swidden sites following deviations from the standard farming practice? In research on swidden farming among the Susu of Sierra Leone, I examined the successional pathway in an age series of forest fallow sites. I show that the standard pattern of minimal cultivation favors the coppicing of felled trees in the subsequent fallow periods. By contrast, deviation from this pattern results in stump deaths and favors the invasion of fallow sites by grasses and vegetatively reproducing pioneer trees from the savanna. Variations in the environmental outcome of disturbance to plant communities, then, are the result of interactions between processes of tropical tree reproduction and the agricultural practices of local farmers.  相似文献   

4.
This study examined the impact of disturbance on the pattern of diversity, forest structure and regeneration of tree species in the Vindhyan dry tropical forest of India. A total of 1500 quadrats distributed over five, 3-ha permanent plots in five sites, differing in degree of disturbance, were used to enumerate and measure the tree species. A total of 65 species with 136,983 individuals were enumerated in the total 15-ha area for stems 30 cm height. The number of species and number of stems ranged from 12 to 50 and 8063–65331 per 3-ha area. The number of species and stems for trees 10 cm dbh ranged from 3 to 28 species, with a mean value of 16 species ha–1, and from 16 to 477 stems, with a mean value of 256 stems ha–1, respectively. The adult based PCA ordination indicated uniqueness of sites in terms of species composition and habitat characteristics. PCA ordination also showed uniqueness of sites in terms of seedling composition, but the seedling and adult distributions were not spatially associated. The distinct species composition at the different sites and at the two life-cycle stages on the same site is indicative of marked spatio-temporal dynamics of the dry tropical forest. The density–diameter semi-logarithmic curves ranged from a near linear to an overall concave appearance with a limited plateau in the mid-diameter ranges. The -diversity and its components decreased with increasing disturbance intensity, reflecting enhanced utilization pressure with increasing disturbance. The site-wise and species-wise regression analyses of the number of individuals in different stages of the species revealed that both the level of disturbance and the nature of species strongly affect the regeneration. In conclusion, although the forest is relatively species-poor, the differential species composition on different sites and the temporal dynamics lend a unique level of diversity to the tropical dry deciduous forest.  相似文献   

5.
To increase crop yields and not to compete for land with food crops, intercropping agricultural cultivation approach was introduced into cultivation of peanut (Arachis hypogaca L.). This approach improves the total yield of the crop per unit area, but decreases the yield of a single crop compared with mono-cropped agricultural cultivation approach. In wheat-peanut relay intercropping system, peanut plants would suffer heat and high light (HI) stress after wheat harvest. In the present work, peanut seedlings were cultivated in low light to simulate wheat-peanut relay intercropping environments. Upon exposure to heat and HI stress, energy dissipation in PSII complexes was evaluated by comparing those cultivated in low irradiance conditions with the mono-cropped peanut. The maximal photochemical efficiency of PSII (Fv/Fm) and the net photosynthetic rate (Pn) decreased markedly in relay-cropped peanut (RP) after heat and HI stress, accompanied by higher degree of PSII reaction center closure (1–qP). After heat and HI stress, higher antioxidant enzyme activity and less ROS accumulation were observed in mono-cropped peanut (MP) seedlings. Meanwhile, higher content of D1 protein and higher ratio of (A + Z)/(V + A + Z) were also detected in MP plants under such stress. These results implied that heat and HI stress could induce photoinhibition of PSII reaction centers in peanut seedlings and both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system were down-regulated in RP compared to classical monocropping systems after heat and high irradiance stress.  相似文献   

6.
The dissolved humic substances of seven Venezuelan blackwater rivers, belonging to different tropical biogeographical regions, were analyzed. Fractionation using Sephadex gel together with an analysis of their fluorescence, absorbance and infrared spectral properties, showed differences between their humic substances. These differences were related to their biological sources and humification environment. Statistical analysis of the properties of these humic substances allowed us to separate the rivers into three groups. These groups were directly related to the geological features and vegetation of the terrestrial ecosystems into which they drain:
  1. The Autana, Atabapo, Chola, Negro which belong to the Amazon basin on the Guayana Shield, each with typical blackwater riverine forest.
  2. The Caroni, belonging to the Orinoco basin on the Guayana Shield and with tropical humid forest and rainforest.
  3. The Morichal Largo which draines the Mesa Formation from the eastern Llanos and has gallery forest of Mauritia flexuosa.
  相似文献   

7.
Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.  相似文献   

8.
Lianas (woody vines) are increasing in neotropical forests, representing one of the first large-scale structural changes documented for these important ecosystems. The potential ramifications of increasing lianas are huge, as lianas alter both tropical forest diversity and ecosystem functioning. At the community level, lianas affect tree species co-existence and diversity by competing more intensely with some tree species than others, and thus will likely alter tree species composition. At the ecosystem level, lianas affect forest carbon and nutrient storage and fluxes. A decrease in forest carbon storage and sequestration may be the most important ramification of liana increases. Lianas reduce tree growth and increase tree mortality—thus reducing forest-level carbon storage. The increase in lianas, which have much less wood than trees, compensates only partially for the amount of carbon lost in the displaced trees. Because tropical forests contribute approximately one-third of global terrestrial carbon stocks and net primary productivity, the effect of increasing lianas for tropical forest carbon cycles may have serious repercussions at the global scale.Key words: carbon cycle, CO2, disturbance, global change, land use change, liana increases, structural changes, tropical forestsTropical forests contain most of the earth''s plant species and contribute more to carbon storage in the form of above ground biomass than any other terrestrial ecosystem. Temperate and boreal forests are changing rapidly in response to global anthropogenic drivers. Similar large-scale changes are now being detected in tropical forests. One of the largest contemporary changes in tropical forests is an increase in lianas (woody vines),1 which could have serious consequences for tree species diversity and composition, as well as the reducing capacity of tropical forests to store carbon.13  相似文献   

9.
The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping.  相似文献   

10.
董艳  董坤  汤利  郑毅  杨智仙  肖靖秀  赵平  胡国彬 《生态学报》2013,33(23):7445-7454
通过田间小区试验,研究了小麦与蚕豆间作对蚕豆枯萎病发生和根际微生物代谢功能多样性的影响。结果表明,小麦与蚕豆间作使蚕豆枯萎病的发病率和病情指数分别比单作显著降低20%和30.4%。与单作处理相比,间作显著增加了蚕豆和小麦根际微生物对31种碳源的平均利用率(AWCD),其中间作蚕豆的AWCD值最高,比单作增加82.7%,单作蚕豆最低。间作蚕豆和间作小麦根际微生物的Shannon多样性指数与丰富度指数均显著高于单作,间作使蚕豆和小麦的丰富度指数分别增加29.2%和30.3%。根际微生物对六类碳源的利用强度百分比以糖类、羧酸类和氨基酸最高,分别为41.96%,19.80%和18.13%。主成分分析表明,小麦与蚕豆间作改变了根际微生物的群落组成;相关分析表明,糖类、羧酸类和氨基酸类碳源是区分单间作处理差异的主要碳源,其中氨基酸类碳源是最敏感的碳源。小麦与蚕豆间作增加了根际微生物活性,提高了Shannon多样性指数和丰富度指数,改变了微生物群落功能多样性,是抑制蚕豆枯萎病的有效措施。该研究为阐明根际微生物功能多样性变化在间作体系病害控制中的作用与机制奠定了理论基础。  相似文献   

11.
Marjorie A. Hoy 《BioControl》1975,20(3):261-268
Hybrids ofApanteles melanoscelus (Ratzeburg) were produced from colonies originating from France, Yugoslavia, and Connecticut. All strains, as well as freshly collected “wild” Connecticut parasitoids of the same species were evaluated in the laboratory for developmental rate, host attack rate, and sex ratios. Development was significantly slower in all the laboratory strains compared to the progeny of forest collected Connecticut females. Progeny production was greater (almost 2X) for the “wild” females and the French-Yugoslavian-Connecticut hybrid than for the laboratory Connecticut strain. The proportion of females collected from the “wild” (Connecticut) strain was higher than that observed in any laboratory strain. A field test was conducted using the triple hybrid in 3 release plots with ca. 6000A. melanoscelus cocoons released per plot in central Connecticut, U.S.A. Weekly collections of gypsy moth larvae showed that the % parasitism was significantly higher in release plots than in the 3 check plots. These results suggest the value of inundative releases ofA. melanoscelus for reduction of sparse gypsy moth populations, but they did not show that hybridization of these strains produced a more effective parasitoid under forest conditions.  相似文献   

12.
桑树-大豆间作对盐碱土碳代谢微生物多样性的影响   总被引:9,自引:0,他引:9  
针对桑树-大豆间作可缓解盐碱土危害的特点,利用BiologTM技术研究了桑树-大豆间作对盐碱土作物根际碳代谢微生物多样性的影响.结果表明:表征土壤微生物代谢活性的平均颜色变化率(AWCD)在桑树-大豆间作下明显高于桑树单作和大豆单作,其中间作大豆的AWCD最高,单作桑树最低.桑树-大豆间作的土壤微生物均匀度指数高于单作,而土壤微生物的多样性指数和优势度指数在间作和单作之间差异不显著,说明桑树-大豆间作改变了盐碱土根际微生物群落结构组成,提高了根际微生物群落多样性.主成分分析表明,桑树-大豆间作和单作下土壤微生物的碳源利用模式出现分异,主要碳源为糖类、羧酸和聚合物类物质等.盐碱土pH和盐度是制约微生物群落多样性的主要因素,间作有效降低了土壤pH和盐度,促进了土壤微生物群落多样性的提高.  相似文献   

13.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

14.

Background and Aims

In communities, plants often simultaneously interact with intra- and inter-specific neighbours and heterogeneous nutrients. How plants respond under these conditions and then affect the structure and function of communities remain important questions.

Methods

Maize (Zea mays L.) was intercropped with potatoes (Solanum tuberosum L.). In the field experiment, we applied fertilizer both homogeneously and heterogeneously under monocropping and intercropping conditions. The heterogeneous nutrient treatment in intercropping was designed with different fertilizer placements, at intraspecific and interspecific rows, respectively. In the pot experiment, crops were grown under both homogeneous and heterogeneous nitrogen conditions with single plant, intraspecific and interspecific competition. Shoot and root biomass and yield were measured to analyse crop performance.

Results

In the field experiment, the heterogeneous nitrogen, compared with the homogenous one, enhanced the performance of the intercropped crop. Importantly, this effect of heterogeneous nitrogen was greater when fertilizer was applied at interspecific rows, rather than at intraspecific rows. Moreover, in pot experiments, the root foraging precision of the two crops was increased by interspecific neighbours, but only that of potatoes was increased by intraspecific neighbours.

Conclusions

The integrated responses of plants to heterogeneous neighbours and nutrients depend on the position of nutrient-rich patches, which deepen our understanding of the function of plant diversity, and show that fertilizer placement within multi-cropping systems merits more attention. Moreover, the enhanced utilization of heterogeneous nitrogen could drive overyielding in multi-cropping systems.  相似文献   

15.
It is well documented that phosphorus (P) input stimulates biological nitrogen (N) fixation (BNF) in tropical forests with non-legume trees. However, in tropical legume forests with soil N enrichment and P deficiency, the effects of P availability and its combination with N on BNF remain poorly understood. In this study, we measured BNF rate in different compartments, i.e., bulk soil, forest floor, rhizosphere, and nodules, in two tropical plantations with legume trees Acacia auriculiformis (AA) versus non-legume trees Eucalyptus urophylla, (EU) in southern China after 4 years of P addition and combined N and P additions. The objective was to investigate how P addition and its combination with N addition regulate BNF in a tropical legume plantation, and to compare the effects with those in a non-legume plantation. Our results showed that total BNF rates were significantly higher in the P-addition plots than in the control plots by 27.4 ± 4.3 and 23.3 ± 1.7 % in the EU and AA plantations, respectively. Total BNF rates were significantly higher in the NP-addition plots than in the control plots by 27.7  ± 5.0 and 8.5 ± 1.4 % in the EU and AA plantations, respectively, which contrasted to our previous result that total BNF rates were significantly lower in N-addition plots than in the control plots in the AA plantation. These findings suggest that P input can stimulate BNF in tropical forest biome dominated by legume trees, even in consideration of elevated atmospheric N deposition. Thus, our study revealed the important role of P in regulating biological N input, which should be taken into account in the modeling of biogeochemical cycles in the future.  相似文献   

16.
Spatio-temporal variations in the structure, density, biomass and production rates of fish were assessed in the neotropical River Ubatiba (Serra do Mar, southeast Brazil). Electrofishing techniques and the length-frequency method were shown to be reliable for the assessment of (ish numbers and production rates in these running waters of medium conductivity. Eighteen fish species of small size and prolonged spawning period were broadly distributed throughout the river catchment. Over the year, the assemblage structure was persistent along the river. Water column omnivore and algae/detritivore species dominated in density (15086-70330 ind. ha−1), whereas three omnivores and a piscivorous species accounted for 70% of the production (51.5-250.4 kg ha−1 yr−1). Comparison of production rates among, tropical, temperate and Mediterranean stream fish assemblages indicate lower rates in tropical streams and an inverse relationship between production and species diversity, lower production rates in high-diversity tropical streams vs higher rates in low-diversity Mediterranean streams, with intermediate rates in temperate streams of intermediate diversity.  相似文献   

17.
18.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

19.
van Andel  T.R. 《Plant Ecology》2003,167(2):293-317
This paper reviews the floristic composition, vegetation structure, and diversity of three types of swamp forest that cover a considerable part of Guyana's North-West District. Trees, shrubs, lianas, herbs, and hemi-epiphytes were inventoried in three hectare plots: one in Mora forest, one in quackal swamp, and one in manicole swamp. The Mora forest, flooded annually by white water, was dominated by relatively few, large individuals of Mora excelsa. The very dense, thin-stemmed quackal forest, almost permanently flooded by black water, was characterized by Tabebuia insignis and Symphonia globulifera and contained few palms. The somewhat less dense manicole swamp, flooded regularly by brackish water, was distinguished by large numbers of Euterpe oleracea. Although the three swamps showed little overlap in floristic composition and densities of dominant species, they represent some of the lowest diversity forest in the Neotropics, with an -diversity of 7.4 for the Mora forest, 8.2 for the quackal forest and 5.7 for the manicole swamp. When compared with similar vegetation types in the Guiana Shield, the swamp forests in this study show some interesting differences in species composition and density. The wetlands of the North-West District form the last stretch of natural coastline in Guyana and play an important role in the protection of riverine ecosystems. Furthermore, there is commercial potential for the extraction of non-timber forest products from these low-diversity forests. Nevertheless, in prolonged dry periods, large tracts of quackal forest are being burnt to give way to almost treeless, flooded savannas. For these reasons, adequate management and conservation strategies must be developed for the area.  相似文献   

20.
The phytomass structure of the evergreen lowland forest vegetation (Tall Amazon Caatinga) supported by tropaquods near San Carlos de Rio Negro, Federal Amazon Territory of Venezuela was studied in 13 10 m× 10 m plots. The plots were laid out subjectively to cover a low topographical gradient along which the forest on tropaquod is grading into a low woodland (Bana, or Low Amazon Caatinga). The phytomass was estimated by destructive sampling. The total living phytomass (dry matter) varies between 199 t/ha in one plot including a natural gap, to 822 t/ha in a plot located near a blackwater creek draining the 10 ha study site in which the vegetation was surveyed. Dead aboveground phytomass (dry matter) varies between 2 and 37 t/ha. The average leaf area index is 5.1. Leaves are sclerophyllous. The mesophyll leaf size class is dominant. Compared with other Amazonian rainforests the Tall Amazon Caatinga is lower in aboveground phytomass and wood volume, respectively, but its root average proportion is 2.4 times greater. One hundred and thirty species (dbh≥1 cm) were recorded in all plots. 14–45 species per plot composed the aboveground phytomass. 20 species each had a relative frequency of 50 or more percent. 7 of these species plus 10 less frequent ones each represented 10 or more percent of the basal area in at least 1 plot. Sixteen species each contributed 10 or more percent to the aboveground phytomass, in at least 1 plot. There is only 1 species (Micranda sprucei, Euphorbiaceae) which was observed in all plots. Its contribution to basal area and aboveground phytomass is considerable. M. sprucei is also the dominant species of the top canopy layer. Eperua leucantha, Caesalpiniaceae, is subdominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号