首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An enriched population of early myeloid cells has been obtained from normal mouse bone marrow by injection of mice with sodium caseinate and the removal of cells with C3 (EAC) rosettes by Ficoll-Hypaque density centrifugation. This enriched population had no EAC or Fc (EA) rosettes and contained 87% early myeloid cells stained for myeloperoxidase and/or AS-D-chloroacetate esterase, 7% cells in later stages (ring forms) of myeloid differentiation and 6% unstained cells, 2% of which were small lymphocytes. After seeding in agar with the macrophage and granulocyte inducer MGI, the enriched population showed a cloning efficiency of 14% when removed from the animal and of 24% after one day in mass culture. Both the enriched and the unfractionated bone marrow cells gave the same proportion of macrophage and granulocyte colonies. The normal early myeloid cells were induced to differentiate by MGI in mass culture in liquid medium to mature granulocytes and macrophages. The sequence of granulocyte differentiation was the formation of EA and EAC rosettes followed by the synthesis and secretion of lysozyme and morphological differentiation to mature cells. D+ myeloid leukemic cells with no EA or EAC rosettes had a similar morphology to normal early myeloid cells and showed the same sequence of differentiation. The induction of EA and EAC rosettes occurred at the same time in both the normal and D+ leukemic cells, but lysozyme synthesis and the formation of mature granulocytes was induced later in the leukemic than in the normal cells. The results indicate that selection for non-rosette-forming normal early myeloid cells also selected for myeloid colony forming cells, that these normal early myeloid cells can form colonies with differentiation to macrophages and granulocytes, that normal and D+ myeloid leukemic cells have a similar sequence of differentiation and that the normal cells had a greater sensitivity for the formation of mature cells by MGI.  相似文献   

3.
The fatty acid composition and some physical properties of intact cells and isolated plasma membranes of two types of mouse myeloid leukemia cell clone grown in culture have been examined. One clone type, MGI+D+, can be induced by the macrophage and granulocyte-inducing protein (MGI) to differentiate into mature macrophages and granulocytes. The other clone type, MGI+D-, could not be induced to differentiate into mature cells. A two-fold increase in the ratio of saturated fatty acid to unsaturated fatty acid was found in the MGI+D- compared to the MGI+D+ clones. The MGI+D- clones produced an unusual polyunsaturated C20:5 fatty acid at 28 degrees C, whereas the MGI+D+ clones did not grow at this temperature. The cells and their isolated plasma membranes were studied by electron spin resonance. The motion of the 5-nitroxide stearate spin label was found to be higher in the intact cells and in the membranes of MGI+D- clones than of the MGI+D+ clones. The cells of MGI+D+ clones showed a similar freedom of motion to normal myeloblasts from the bone marrow. The results indicate that myeloid leukemia cells which differ in their competence to be induced to differentiate into mature cells have different physical properties of their plasma membranes and that this is correlated with their fatty acid acyl chain composition.  相似文献   

4.
There are clones of myeloid leukemic cells that can be induced to differentiate by the normal differentiation-inducing protein MGI to form Fc and C3 rosettes, mature macrophages and granulocytes. One of these clones (MGI+DMSO+) was also inducible by dimethylsulfoxide (DMSO) for C3 but not Fc rosettes, and for mature macrophages but not for mature granulocytes. Other clones (MGI+DMSO-) were inducible by MGI but not DMSO and a third type of clone (MGI-DMSO-) was not inducible by either compound. Clones that differed in their inducibility by DMSO showed a similar inhibition of cell multiplication by DMSO. The results indicate, that some stages of differentiation can be induced by DMSO in an appropriate clone of myeloid leukemic cells and that there are different cellular sites for induction by DMSO and MGI.  相似文献   

5.
B Hoffman-Liebermann  L Sachs 《Cell》1978,14(4):825-834
The regulation of cytoplasmic proteins in mutants of mouse myeloid leukemic cells, differing in their competence to be induced to differentiate by the normal macrophage- and granulocyte-inducing protein (MGI) and the steroid inducer dexamethasone, was analyzed using SDS-polyacrylamide gel electrophoresis of 35S-methionine-labeled proteins. Before induction, no consistent differences in the pattern of cytoplasmic proteins were found between clones with different capabilities to differentiate.Four MGI+D+ clones, which are induced by MGI for Fc and C3 rosettes, the synthesis and secretion of lysozyme, and the formation of mature macrophages and granulocytes, all showed the same nine prominent changes in cytoplasmic proteins after induction. Five of these changes were either an increase or a decrease in proteins present in uninduced cells; four proteins appeared to be newly synthesized. One of the proteins that increased after induction was identified as actin. The pattern of cytoplasmic proteins from MGI-induced MGI+D+ clones more closely resembled that of normal peritoneal macrophages and granulocytes than the pattern of the uninduced clones. The relationship of these protein changes to cell differentiation was further substantiated by the finding that MGI+D? cells, which can be induced by MGI for Fc and C3 rosettes and lysozyme, but not for mature cells, showed only four cytoplasmic protein changes which were quantitatively less than those found for MGI+D+ clones. An MGI?D? clone which was not inducible for any differentiation-associated properties by MGI showed no alteration in protein synthesis. Thus in all the clones studied, there was a correlation between the number and extent of protein changes and the degree of MGI-induced differentiation.In MGI+D+ clones, some of the differentiation-associated properties induced by MGI can be induced by the steroid hormone dexamethasone. Of the nine protein changes induced by MGI, six were also induced by dexamethasone, and no changes were induced by dexamethasone which were not also induced by MGI. These results, which were also shown by two-dimensional polyacrylamide gel electrophoresis, indicate that in cells which can respond to both MGI and dexamethasone, the proteins induced by dexamethasone were a subset of those induced by MGI.  相似文献   

6.
Normal hematopoietic cells require the presence of a protein (MGI) in the appropriate conditioned medium (CM) for cell viability and growth and for differentiation to mature macrophages and granulocytes. Clones of myeloid leukemic cells have been established in culture (D+ clones) which require CM with this protein for differentiation, but not for cell viability and growth. It has been shown that these leukemic cells can be induced by CM to again require, like normal cells, the presence of CM for cell viability and growth. Induction of this requirement, which will be referred to as RVG, occurred before the D+ cells differentiated to mature granulocytes. Clones of myeloid leukemic cells (D? clones) that could not be induced to differentiate to mature cells, did not show the induction of RVG. The steroid hormones prednisolone and dexamethasone can induce some, but not all the changes associated with differentiation of D+ cells. Incubation with these steroids did not result in the induction of a requirement for these steroids for cell growth and viability. Studies with CM from different sources have shown, that all batches that induced RVG also induced differentiation of D+ cells and that both activities were inhibited after treating the CM with trypsin. It is suggested that the same protein (MGI) may be involved in both activities. Incubation of D+ cells with CM resulted in an increase in agglutinability by concanavalin A and this increase was maintained even in the absence of CM. This suggests, that the induction of RVG in D+ myeloid leukemic cells is associated with a change in the cell surface membrane.  相似文献   

7.
J Lotem  L Sachs 《The EMBO journal》1986,5(9):2163-2170
There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells.  相似文献   

8.
Genetically differerent clones of myeloid leukemic cells have been used to study the activation of normal genes in these malignant cells by the normal physiological inducer of myeloid cell differentiation, the protein MGI. In appropriate clones, MGI induced the normal differentiation-associated property of chemotaxis to a variety of compounds including the steroid hormone dexamethasone. The induced cells could also distinguish among different steroids by chemotaxis, suggesting that there are specific membrane interaction sites for steroids. The sequence of differentiation in these cells was the formation of C3 and Fc rosettes leads to phagocytosis of these rosettes and chemotaxis leads to synthesis and secretion of lysozyme leads to mature macrophages or granulocytes. The use of appropriate mutants and the comparison of induction by MGI and dexamethasone has shown that chemotaxis to casein can be dissociated from: chemotaxis to dexamethasone, ATP, and bacterial factor; formation of C3 or Fc rosettes; phagocytosis of these rosettes; synthesis of lysozyme; and the formation of mature cells. It is suggested from this dissection of normal differentiation that there are different membrane changes for specific chemotaxis, formation of these rosettes, and their phagocytosis, and that induction of each of these properties requires activation of different genes.  相似文献   

9.
Sera from different strains of mice injected with endotoxin induced clones (D+) from a cultured line of myeloid leukemic cells to undergo normal differentiation to mature granulocytes and macrophages. Other clones (D?) derived from the same cell line were not inducible by these sera to undergo normal cell differentiation. Sera from the same strains of mice that had not been injected with endotoxin, increased the cloning efficiency of D+ and D ? clones but did not induce differentiation. Endotoxin serum induced differentiation in D+ cells at dilutions up to 1:64, but increased the cloning efficiency of these cells at dilutions up to 1:2048. The end point of the dilution of endotoxin serum that induced differentiation in D+ cells, was also the end point that induced the formation of colonies with differentiation from normal bone marrow cells. The results indicate that serum from endotoxin treated animals can serve as a good in vivo source to induce normal differentiation in D+ myeloid leukemic cells; that the progeny of a single leukemic cell was induced to undergo differentiation to both macrophages and granulocytes; that endotoxin serum contained two activities, one that increased cloning efficiency and the other that induced cell differentiation; and that the same material in endotoxin serum induced cell differentiation in normal and leukemic cells.  相似文献   

10.
D+ but not D- myeloid leukemic cells can be induced by the appropriate conditioned medium or by serum from endotoxin treated mice, to undergo cell migration in agar, cell attachment to the surface of a Petri dish and differentiation to mature macrophages and granulocytes. Inhibition of cell multiplication by cytosine arabinoside, hydroxyurea, mitomycin C, thymidine, 5-bromodeoxyuridine, 5-iododeoxyuridine, 5-fluorodeoxyuridine or actinomycin D, but not by vinblastine or cycloheximide, induced cell migration, cell attachment to the Petri dish and the formation of macrophages in D+ cells. There was no induction of cell migration or formation of macrophages and a much lower induction of cell attachment in D- cells. The induction of these changes in D+ cells required protein synthesis and the inhibitors showed the same toxicity for D+ and D- cells. The results indicate, that the inhibitors induced specific surface membrane changes in D+ but not in D- cells.  相似文献   

11.
G Symonds  L Sachs 《The EMBO journal》1982,1(11):1343-1346
Growth and differentiation of normal myeloid haematopoietic cells are regulated by a family of macrophage- and granulocyte-inducing (MGI) proteins. Some of these proteins (MGI-1) induce cell growth and others (MGI-2) induce cell differentiation. Addition of MGI-1 to normal myeloid cells induces growth and also induces the endogenous production of MGI-2. This induction of differentiation-inducing protein by growth-inducing protein then ensures the coupling between growth and differentiation found in normal cells. There are myeloid leukemic cells that constitutively produce their own MGI-1, but the cells do not differentiate in culture medium containing horse or calf serum. By removing serum from the medium, or in medium with mouse or rat serum, these leukemic cells are induced to differentiate to mature cells, which like normal mature cells, then no longer multiply. Leukemic cells with constitutive production of MGI-1 continuously cultured in serum-free medium with transferrin were also induced to differentiate by removing transferrin. This induction of differentiation was in all these cases associated with the endogenous production of MGI-2 by the cells. The results indicate that changes in specific constituents of the culture medium can result in autoinduction of differentiation in these leukemic cells due to restoration of the induction of MGI-2 by MGI-1, which then restores the normal coupling of growth and differentiation.  相似文献   

12.
Glucose utilization, energy metabolism and associated membrane changes, have been studied in D+ myeloid leukemic cells that can be induced to undergo cell differentiation to mature granulocytes by incubation with the appropriate conditioned medium (CM) and in D? myeloid leukemic cells that cannot be induced to differentiate to mature cells. Before incubation with CM, glycolysis and the glycolytic production of ATP were lower and the activity of the pentose cycle was higher in D+ than in D? cells. ATP depletion induced a higher degree of agglutination by concanavalin A in D? than in D+ cells, indicating a difference in their surface membrane. There were no detectable differences in the transport of glucose and the synthesis of sterols and fatty acids. After incubation with CM, the D+ cells, like normal granulocytes, showed a higher glycolysis, produced their ATP more through glycolysis than oxidative phosphorylation, became less dependent on the exogenous supply of glucose and oxygen and had a lower rate of sterol and fatty acid synthesis. The differentiating D+ cells also showed a change in their surface membrane resulting in an increased agglutinability without a change in ATP content and a stimulation of the pentose cycle by concanavalin A. These properties, which were not acquired by D? cells, were found before most of the D+ cells had differentiated to mature granulocytes. The data indicate, that the block in the ability of the D? cells to differentiate and the acquisition of the metabolic properties of normal granulocytes by differentiating D+ cells, were associated with differences in the organization of the cell surface membrane.  相似文献   

13.
The regulation of gene expression in leukemic and normal myeloblasts induced to differentiate by the normal macrophage and granulocyte inducing protein MGI was studied by analysis of protein changes using two-dimensional polyacrylamide gel electrophoresis. During the 6-day period of differentiation from myeloblasts to mature cells, there was a programmed sequential change in the rate of synthesis of 217 of the 450 proteins detected in a MGI+D+ leukemic clone. The developmental program was initiated with a decrease in the synthesis of many proteins within the first hour, whereas the synthesis of new proteins occurred later, mostly between the second and fourth days. The mature cells showed a specialization associated with a changeover and increased synthesis of the major protein species. Both the MGI+D+ leukemic and the normal myeloblasts showed a similar sequence of protein changes during differentiation. The normal developmental program was thus maintained in the MGI+D+ leukemic cells. Cell mutants which differ in their competence to be induced to differentiate by MGI were used to dissect the developmental program of differentiation. Sixty-six protein changes were induced by MGI in partially differentiatable MGI+D? clones, whereas only 12 or 16 protein changes were induced in different MGI?D? clones which had not been induced for any previously known differentiation-associated property. In these mutant clone types, the induced protein changes were subsets of those induced by MGI in the MGI+D+ leukemic and normal myeloblasts. These subsets spanned the whole 6-day period of differentiation and had the same developmental sequence as in the fully differentiatable MGI+D+ cells. These data indicate that the protein changes during differentiation are not organized as one sequence, but rather as multiple, parallel sequences which can be separately induced. MGI induced some, but not all, of these sequences in the mutant clones. It is concluded that differentiation consists of multiple, parallel, separately programmed pathways of gene expression. Analysis of the initial differences between the proteins synthesized in untreated normal and leukemic myeloblasts has shown that all the leukemic clones, when compared to normal myeloblasts, constitutively expressed the MGI-induced state for a common subset of 14 proteins. In addition, the MGI+D? and MGI?D? clones, compared to MGI+D+, constitutively expressed the differentiated state for other subsets of proteins. The size of these constitutively expressed subsets was larger in MGI?D? than in MGI+D? clones. It is, therefore, suggested that the constitutive expression of some pathways of gene expression results in leukemia, whereas the constitutive expression of other pathways results in a decreased competence for the induction of differentiation.  相似文献   

14.
Mouse myeloid leukemic cells (Ml) could be induced by a factor in ascitic fluid to phagocytize, migrate in agar, and change into forms that were morphologically similar to macrophages and granulocytes. Arginase also induced these differentiation-associated properties of the cells. The Ml cells did not differentiate in culture medium containing arginine, but they differentiated into macrophages and granulocytes during culture in arginine-deficient culture medium. Therefore, the effect of arginase may be attribute to arginase-mediated arginine depletion.  相似文献   

15.
There are clones of myeloid leukemic cells that can be induced to undergo terminal cell differentiation to macrophages by normal hemopoietic regulatory proteins. Induction of differentiation in two different clones of myeloid leukemic cells with interleukin 6 (IL-6) or granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in induction of mRNA for the hemopoietic regulatory proteins IL-6, GM-CSF, interleukin 1 alpha and interleukin 1 beta, tumor necrosis factor, and transforming growth factor beta 1. In one of these clones, induction of differentiation with GM-CSF was also associated with induction of mRNA for macrophage colony-stimulating factor (M-CSF) but not for the receptor for M-CSF (c-fms), whereas in the other clone, induction of differentiation with IL-6 was associated with induction of mRNA for both c-fms and M-CSF. The clones also differed in their responsiveness to these regulators. There was no induction of mRNA for granulocyte colony-stimulating factor or interleukin 3 during differentiation of either clone. The results indicate that the genes for a nearly normal network of positive and negative hemopoietic regulatory proteins are induced during differentiation of these myeloid leukemic cells and that there are leukemic clones with specific defects in this network.  相似文献   

16.
Regulation of gene expression during myeloid cell differentiation has been analyzed using clones of myeloid leukemic cells that differ in their competence to be induced to differentiate by the normal macrophage- and granulocyte-inducing protein MGI. Changes in the relative rate of synthesis for specific proteins were compared to changes in the relative amounts of corresponding translatable poly(A)+ mRNAs, assayed in the reticulocyte cell-free translation system, using two-dimensional gel electrophoresis. Of the 217 proteins which changed during MGI-induced differentiation of normally differentiating MGI+D+ leukemic cells, 136 could be identified as products of cell-free translation. Eighty-four percent of the 70 decreases in synthesis, most of which occurred early during differentiation, were not accompanied by a parallel decrease in the amount of translatable mRNA, but were accompanied by a parallel shift of the corresponding mRNAs from the polysomal to the monosomal and free mRNA fractions. These results indicate that most of the early decreases in the synthesis of proteins were translationally regulated. In contrast, 81% of the proteins which increased in synthesis and 71% of the proteins that were induced de novo were regulated at the level of mRNA production. Experiments with differentiation defective mutants have shown that they were blocked both at the level of mRNA production and mRNA translation. The data with these mutants have suggested that there were different subsets of translationally regulated proteins which were separately regulated. The translational blocks for several proteins in these mutant clones have also made it possible to identify additional translational sites of regulation for protein changes that were controlled at the level of mRNA production during normal differentiation. The results indicate that translational regulation may predominantly have a different function in cell differentiation than regulation by mRNA production, and that differentiation-defective mutants can be blocked at either level.  相似文献   

17.
The recently cloned ecto-ATPase and ecto-apyrase (ecto-ATP diphosphohydrolase) are plasma-membrane-bound enzymes responsible for the extracellular degradation of nucleoside 5'-triphosphates and nucleoside 5'-diphosphates. We expressed the rat-derived enzymes in CHO cells to compare their molecular and functional properties. Sequence-specific polyclonal antibodies differentiate between the two proteins and reveal identical molecular masses of 70-80 kDa. Both enzymes are stimulated by either Ca2+ or Mg2+ and reveal a broad substrate specificity towards purine and pyrimidine nucleotides. Whereas ecto-apyrase hydrolyzes nucleoside 5'-diphosphates at a rate approximately 20-30% lower than nucleoside-5'-triphosphates, ecto-ATPase hydrolyzes nucleoside-5'-diphosphates only to a marginal extent. The sensitivity of the two enzymes to the inhibitors of P2 receptors suramin, PPADS and reactive blue differs. Hydrolysis of ATP by ecto-ATPase leads to the accumulation in the medium of extracellular ADP as an intermediate product, whereas ecto-apyrase dephosphorylates ATP directly to AMP. Our results suggest that previous data describing extracellular hydrolysis of ATP by a variety of intact cellular systems with unidentified ecto-nucleotidases may be explained by the coexpression of ecto-ATPase and ecto-apyrase.  相似文献   

18.
Mouse myeloid leukemia cells (Ml) were induced to differentiate into mature macrophages and granulocytes by various inducers. The differentiated Ml cells synthesized and released prostaglandins, whereas untreated Ml cells did not. When the cells were prelabelled with [14C]arachidonate, the major prostaglandins released into the culture media were found to be prostaglandin E2, D2, and F in an early stage of differentiation, but the mature cells produced predominantly prostaglandin E2. The synthesis and release of prostaglandins were completely inhibited by indomethacin. Dexamethasone, a potent inducer of differentiation of Ml cells, did not induce production of prostaglandins in resistant Ml cells that could not differentiate even with a high concentration of dexamethasone. These results suggest that production of prostaglandins in Ml cells is closely associated with differentiation of the cells. Homogenates of dexamethasone-treated Ml cells converted arachidonate to prostaglandins, but this conversion was scarcely observed with homogenates of untreated Ml cells. Dexamethasone and the other inducers stimulated the release of arachidonate from phospholipids. Therefore, induction of prostaglandin synthesis during differentiation of Ml cells may result from induction of prostaglandin synthesis activity and stimulation of the release of arachidonate from cellular lipids. Lysozyme activity, which is a typical biochemical marker of macrophages, was induced in Ml cells by prostaglandin E2 or D2 alone, as well as by inducers of differentiation of the cells, but it was not induced by arachidonate or prostaglandin F. These results suggest that prostaglandin synthesis is important in differentiation of myeloid leukemia cells.  相似文献   

19.
The murine myelomonocytic leukemia cell line WEHI-3B D+, which differentiates in response to granulocyte colony stimulating factor (G-CSF), can also be induced to differentiate into monocyte-macrophages by phorbol myristate acetate (PMA) treatment, whereas the WEHI-3B D- subline, which is unresponsive to G-CSF and PMA, can be induced to differentiate to granulocytes as well as monocytes by 1,25-dihydroxycholecalciferol [1,25-(OH)2 D3], the biologically active metabolite of vitamin D3. A newly developed variant of the WEHI-3B D+ line, named WEHI-3B D+ G, which was responsive to G-CSF but not to PMA, was also differentiated to granulocytes by 1,25-(OH)2 D3. Although vitamin D3 has been reported to induce macrophage differentiation in responsive tumor cells, this is the first demonstration that 1,25-(OH)2 D3 can induce granulocyte differentiation. In both differentiation pathways, cessation of cellular proliferation accompanies changes in morphologic and cytochemical properties of the cells. This suggests that leukemic cell lines unresponsive to differentiation agents acting at the cell surface retain their ability to differentiate in response to agents that do not act via the plasma membrane such as 1,25-(OH)2 D3, which has cytosolic/nuclear receptors. Vitamin D3 could act through different cellular pathways inducing differentiation or by bypassing only the first step of a common differentiation cascade used by agents with cell surface receptors such as CSF. These results suggest that low doses of 1,25-(OH)2 D3 may be useful in combination with hemopoietic growth factors (CSFs) as therapeutic agent to induce leukemic cell differentiation in vivo.  相似文献   

20.
Mouse myeloid leukemic cells(Ml) could be induced by glucocorticoids to form Fc receptors, phagocytize, migrate in agar, induce lysosomal enzyme activities, and change into forms that were morphologically similar to macrophages and granulocytes. Adenosine 3′:5′ cyclic monophosphate also induced lysosomal enzyme activities, but not the other differentiation-associated properties. The induction of lysozyme activity was marked, the activity reaching about 400 times the initial activity at 5 days after treatment. This suggests that adenosine 3′:5′ cyclic monophosphate may be important in induction of lysozyme activity during differentiation of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号