首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. Five adult, female alligators (Alligator mississippiensis) were captured at night during the breeding season, and a blood sample taken within 5 min of capture.
  • 2.2. The alligators were physically restrained (tied to boards) and additional blood samples taken at 4, 8, 12, 16, 22, 28, 38, and 48 hr after capture. After the last blood sample was collected the animals were released.
  • 3.3. Plasma estradiol-17β and corticosterone were measured by radioimmunoassay. Estradiol declined significantly from initial values by 22 hr post capture, but remained unchanged for 48 hr.
  • 4.4. Plasma corticosterone rose from a mean of 0.8 ng/ml at capture to 12.6 ng/ml after 4 hr. Corticosterone continued to rise up to 16 hr then declined after 22 hr. From 28 until 48 hr corticosterone again increased significantly.
  • 5.5. These results demonstrate that acute stress in female alligators causes significant suppression of plasma estradiol and a biphasic pattern of corticosterone secretion.
  相似文献   

2.
Ten juvenile alligators, mean body mass 793 g, hatched from artificially incubated eggs and raised under controlled conditions, were held out of water with their jaws held closed for 48 hr. An initial blood sample was taken and further samples collected at 1, 2, 4, 8, 24, and 48 hr. Epinephrine, norepinephrine, and dopamine were measured in plasma aliquots of 1.5 ml using high pressure liquid chromatography with electrochemical detection. Corticosterone was measured by radioimmunoassay. Plasma glucose was measured using the Trinder method and plasma calcium, cholesterol, and triglycerides were measured in an autoanalyzer. Epinephrine was about 4 ng/ml at the initial bleed, but declined steadily to < 0.4 ng/ml by 24 hr. Norepinephrine was also about 4 ng/ml at the initial bleed, but rose to over 8 ng/ml at 1 hr, and then declined to < 0.2 ng/ml at 24 hr. A second, but smaller increase in plasma norepinephrine was seen at 48 hr. Plasma dopamine was low at the initial bleed (< 0.7 ng/ml), rose to over 8 ng/ml at 1 hr, then declined to < 0.2 ng/ml. Plasma corticosterone rose progressively for the first 4 hr, declined at 8 hr and 24 hr, then rose again at 48 hr. Plasma glucose rose significantly by 24 hr and remained elevated for 48 hr. Plasma calcium increased at 1, 2, and 4 hr then returned to levels not significantly different from the initial sample at 24 and 48 hr. The white blood cells showed changes indicating immune system suppression. By the end of the treatment the hetorophil/lymphocyte ratio increased to 4.7. These results suggest that handling alligators, taking multiple blood samples, and keeping them restrained for more than 8 hr is a severe stress to the animals.  相似文献   

3.
Male farm-reared alligators were injected with mammalian FSH, LH, hCG, prolactin, or saline. A blood sample was taken immediately prior to injection of hormone and at 24 h postinjection. Testosterone concentrations in the plasma were then determined by radioimmunoassay. Only the alligators injected with FSH showed a significant increase in plasma testosterone. In a second series of experiments male alligators were injected with ovine LH, ovine FSH, or saline and bled at 0, 2, 4, 16, and 24 h postinjection. Again, only the alligators injected with FSH showed significant increases in plasma testosterone at 16 and 24 h postinjection. Mammalian LH does not appear to stimulate testosterone secretion in male alligators.  相似文献   

4.
Pathogenic microbes require Fe and Zn for growth and proliferation. Upon infection, microbes produce proteins, called sidephores, designed to strip serum divalent metals away from host proteins. Higher vertebrates respond to infection by increasing the expression of proteins that sequester serum iron away from bacteria. As a result, host plasma Fe levels decrease during the initial phases of infection. This study was conducted to determine if the American alligator, an ancient reptile, exhibits the same innate immune mechanism to protect against in vivo microbial proliferation. Intraperitoneal injection of juvenile captive alligators with bacterial lipopolysaccharide (LPS) resulted in a time-dependent decrease in plasma Fe, as determined by inductively coupled plasma emission spectroscopy. Plasma Fe levels decreased by 5.9, 10.6, and 18.6% relative to untreated control levels at 3, 6, and 12 hr post-injection, respectively, and remained decreased by 12.0% at 48 hr. Alligators injected with pyrogen-free saline did not exhibit statistically significant changes in plasma Fe concentrations at any time point observed. In contrast, serum Zn and Cu remained unchanged relative to untreated controls. To insure that the decreases in plasma Fe were not due to the repeated blood collections during the course of the kinetic study, another experiment was conducted in which plasma metals were measured at 24 hr post-injection. Once again, plasma Fe was reduced by 30.2%, whereas Zn and Cu did not exhibit appreciable changes. These results show that alligators exhibit low plasma Fe levels during an inflammatory response induced by bacterial lipopolysaccharide.  相似文献   

5.
Blood samples were collected from 26 captive-reared alligators (25 females; one male) and 12 (seven females and five males) wild "nuisance" alligators collected by wildlife personnel in south Louisiana in May 1995. The captive alligators, hatched from artificially incubated eggs in 1972-1973, had received vitamin E supplements during the 3 weeks before the blood sample was collected. Each sample was analyzed for vitamin E (alpha-tocopherol), vitamin A (retinol), total lipid, triacylglycerol, phospholipid, cholesterol, cholesteryl ester, free fatty acids, steroid hormones and a standard clinical blood panel. The fatty acid composition of the plasma lipid fraction was also analyzed. Results indicated that 18 of the captive females and three of the seven wild females were undergoing vitellogenesis, i.e. had elevated plasma estradiol and elevated plasma calcium. Vitellogenic females had higher vitamin E than non-vitellogenic females (77.4 microg/ml vs. 28.6 microg/ml in captive females; 24.0 microg/ml vs. 21 microg/ml in wild females). Plasma retinol was similar in all groups, ranging from 0.5 to 1.4 microg/ml and close to values reported in birds. All lipid fractions, with the exception of cholesteryl ester, were higher in captive alligators than in wild alligators. There were also significant differences in the fatty acid composition of wild and captive alligators. Plasma eicosapentaenoic and docasahexaenoic acid were higher in wild than in captive alligators, whereas linoleic was higher in captive than in wild.  相似文献   

6.
To determine whether CRH is required for the evening rise in plasma ACTH, rats were injected at 0800 hr with CRH antiserum (anti-CRH) or normal rabbit serum (NRS). Blood samples were taken through venous catheters at 0800 hr before treatment and at 1300, 1700, and 2100 hr. Plasma was assayed for immunoreactive ACTH and corticosterone. There was no significant difference in pretreatment values between the two groups. Immunoneutralization of CRH abolished the rise in plasma ACTH seen at 1700 hr in the NRS group but had little effect on earlier levels. The diurnal elevation in plasma corticosterone continued after anti-CRH treatment, but peak levels occurred earlier. Plasma ACTH and corticosterone were significantly correlated at the time of the diurnal surge, but not at 0800 hr or 1300 hr in the NRS controls or at any time point in the anti-CRH group. These results suggest that CRH is required for the diurnal surge of plasma ACTH. They also confirm previous observations by others that the adrenal cortex does not require active CRH or a diurnal surge of ACTH in order to exhibit a significant diurnal increase in secretion of corticosterone, and that factors other than CRH may be relatively more active than CRH in regulation of ACTH secretion during the time of circadian inactivity.  相似文献   

7.
The seasonal patterns of two primary plasma androgens, testosterone (T) and dehydroepiandrosterone (DHEA), were assessed in adult male alligators from the Merritt Island National Wildlife Refuge, a unique barrier island environment and home to the Kennedy Space Center in Florida. Samples were collected monthly from 2008 to 2009, with additional samples collected at more random intervals in 2007 and 2010. Plasma T concentrations peaked in April, coincident with breeding and courtship, and declined rapidly throughout the summer. Seasonal plasma T patterns in smaller though reproductively active adult males differed from those in their larger counterparts during the breeding season. Both size classes showed significant increases in plasma T concentration from February to March, at the beginning of the breeding season. However, smaller adults did not experience the peak in plasma T concentrations in April that were observed in larger adults, and their concentrations were significantly lower than those of larger males for the remainder of the breeding season. Plasma DHEA concentrations peaked in May and were significantly reduced by June. This is the first study to demonstrate the presence of DHEA in a crocodilian, and the high plasma DHEA concentrations that paralleled the animals' reproductive activity suggest a reproductive and/or behavioral role in adult male alligators. Similar to androgen variations in some birds, plasma DHEA concentrations in the alligators were considerably higher than T concentrations during the nonbreeding season, suggesting a potential role in maintaining nonbreeding seasonal aggression.  相似文献   

8.
To identify possible age-dependent changes in the feedback relationship between the brain-pituitary and testes, we examined the minute-to-minute patterns of plasma luteinizing hormone (LH) and testosterone (T) in intact, young male rats and compared these profiles to those of old animals. Young (3 mo; n = 11) and old (22 mo; n = 12) Sprague-Dawley rats were fitted with indwelling venous catheters and between 24 and 48 h later, were bled without anesthesia, by remote sampling, at 10-min intervals for 8 h. Blood samples of 400 microliter were withdrawn, and an equivalent volume of a blood replacement mixture was infused after each sample. Plasma LH and T levels in each sample were measured by radioimmunoassay (RIA). Plasma T levels in old animals failed to show the transient oscillations observed in young animals. Mean plasma T levels were 50% lower in old compared to young animals (P less than 0.001). Plasma patterns of LH in old animals, like their younger counterparts, showed statistically significant episodic increases, whose apparent pulse frequency was inappropriately low for their circulating T level (although not statistically different from the young group). Pulse amplitude in the old animals was 66% lower in the old compared to the young group (P less than 0.015). We conclude that age-associated alterations in brain mechanisms governing LH secretion underline these endocrine changes.  相似文献   

9.
Three adult Finn cross rams were bled at 30-min intervals for 7 h in March, May–June, August and November, and again at hourly intervals for 2 h after an intravenous injection of 50 μg of a GnRH analogue. Plasma testosterone concentrations were measured by radioimmunoassay. The mean testosterone level from 15 blood samples for each ram was highest in November and lowest in March. The episodic pulse pattern of testosterone secretion during the 7-h blood sampling periods was most evident, and more similar among rams in August and November, and less so in March and May.The mean testosterone concentration from the blood samples collected 1 and 2 h after GnRH injection was significantly higher in August–November than in March–June, but the ratio of the testosterone level after to that before injection was highest in March and lowest in November.  相似文献   

10.
An initial study was conducted to establish the presence in plasma of diurnal rhythms of immunoreactive porcine adrenocorticotropic hormone (pACTH) and cortisol in castrated male pigs (barrows). Fourteen barrows with jugular catheters were bled at 6-hr intervals for 24 hr. Significant changes in plasma pACTH were evident with peak levels (61 +/- 6 pg/ml) at 0100-0700 hr and a trough (38 +/- 4 pg/ml) at 1900 hr. Changes (P less than 0.05) in plasma cortisol were also present in barrows with a peak (44 +/- 6 ng/ml) at 0700 hr and a trough (21 +/- 5 ng/ml) at 1900 hr. Plasma norepinephrine and epinephrine were measured at the same time intervals and did not differ among hours. In these unstressed pigs the ratio cortisol/log10pACTH at 0700 hr (25.3 +/- 3.0) was greater than the ratio at 1900 hr (12.9 +/- 2.7). Sequential blood samples were subsequently taken on four of the barrows 12 and 26 days later. Plasma pACTH was variable among pigs and did not differ among hours. Plasma cortisol on both dates was greater (P less than 0.05) in the morning (0100 or 0700 hr) than at 1900 hr. The ratio cortisol/log10pACTH at 0700 hr was repeatedly greater than at 1900 hr. A second study was conducted to determine whether plasma pACTH and cortisol responses to mild (32 degrees C for 2 hr) or strong (20-min restraint) stressors were dependent on the time of day of stressor application (0800 hr, AM; 1600 hr, PM). Response-associated parameters (maximum concentration, maximum incremental concentration, and integrated response) for pACTH and cortisol did not differ between AM and PM. However, a qualitative difference existed between the AM and PM plasma pACTH responses to restraint +32 degrees C wherein the AM response consisted of a single prolonged surge, and the PM response of an initial major peak followed by a second significant minor peak. A suggested explanation is that the initial 20-min restraint stressor potentiated the hypothalamic-hypophyseal response to 32 degrees C. These studies are the first direct measurements which suggest the presence of diurnal changes in plasma ACTH and cortisol in barrows. The studies also indicate for barrows an absence of diurnal changes in plasma epinephrine and norepinephrine. The responsiveness of the pituitary-adrenocortical axis to stressors did not exhibit quantitative diurnal changes at the time periods measured. However, it is hypothesized that the repeatable AM-PM difference in the ratio cortisol/log10ACTH reflects a diurnal change in adrenal responsiveness to ACTH in unstressed pigs.  相似文献   

11.
Calorie restriction of young male rats increases plasma prolactin, decreases luteinizing hormone (LH) and testosterone, and disrupts their 24 h secretory pattern. To study whether this could be the consequence of stress, we examined the 24 h variations of plasma adrenocorticotropic hormone (ACTH) corticosterone, growth hormone (GH), leptin, and adrenal corticosterone. Rats were submitted to a calorie restriction equivalent to a 66% of usual intake for 4 weeks, starting on day 35 of life. Controls were kept in individual cages and allowed to eat a normal calorie regimen. Significantly lower ACTH levels were detected in calorie-restricted rats. Plasma corticosterone levels during the light phase of the daily cycle were significantly higher in calorie-restricted rats. Time-of-day variation in plasma ACTH and corticosterone levels attained significance in calorie-restricted rats only, with a maximum toward the end of the resting phase. The daily pattern of adrenal gland corticosterone mirrored that of circulating corticosterone; however, calorie restriction reduced its levels. Plasma ACTH and corticosterone correlated significantly in controls only. Calorie restriction decreased plasma GH and leptin, and it distorted 24 h rhythmicity. In a second study, plasma ACTH and corticosterone levels were measured in group-caged rats, isolated control rats, and calorie-restricted rats during the light phase of the daily cycle. Plasma ACTH of calorie-restricted rats was lower, and plasma corticosterone was higher, compared with isolated or group-caged controls. The changes in the secretory pattern of hormones hereby reported may be part of the neuroendocrine and metabolic mechanisms evolved to maximize survival during periods of food shortage.  相似文献   

12.
1. Feeding British United turkeys (BUT) and Nicholas turkeys (NT) diets with varying carbohydrate levels for 24 hr post-hatch resulted in lower hepatic glucose-6-phosphatase activity and higher plasma glucose levels as dietary carbohydrate level was increased. 2. There were no differences between the strains in liver weight or glucose-6-phosphatase activity, but BUT exhibited higher plasma glucose values than did NT at the two highest levels of carbohydrate. Plasma glucose did not differ between strains at the lowest level of carbohydrate or in fasted poults. 3. Blood glucose values were consistently higher in both strains when sampled 1 hr after initial sampling of fasted poults. 4. Both strains were able to maintain the 1 hr blood glucose levels through 24 hr when kept at approximately 37 degrees C. 5. When held at approximately 21 C for the first hour and at approximately 37 degrees C through 24 hr fasted NT were able to maintain the initial blood glucose rise while BUT were not.  相似文献   

13.
This study investigates the relationships between plasma corticosterone concentrations and white cell counts in captive females of the viviparous lizard Egernia whitii during two phases of the reproductive cycle. Gestating and postpartum females were captured in the field and held in the laboratory for 4 weeks. Plasma corticosterone and progesterone concentrations and white blood cell counts were examined in blood samples taken at capture and after 24 h, 1 week, and 4 weeks in captivity. At 24 h after capture, plasma corticosterone concentrations in both groups had increased significantly compared with initial values but then returned to initial concentrations after 1 week in captivity and remained low in the 4 week samples. Plasma progesterone concentrations remained elevated in the gestating females until the week 4 sample, just prior to parturition. The hormone data suggest that capture and captivity did not represent a significant long-term stressor to these animals. The increase in plasma corticosterone concentration was associated with heterophilia in the differential leucocyte count in both groups of females. Lymphocyte numbers decreased only in gestating females, suggesting that reproductive status may influence the interaction between adrenal activity and immune function.  相似文献   

14.
Bacterial lipopolysaccharide (LPS) stimulates massive release of tumor necrosis factor-alpha (TNF-alpha) together with nitric oxide (NO) and a lessor release of leptin. We hypothesized that other types of stress such as that of surgery might also release these cytokines and NO. Adult male rats were anesthetized with ketamine/acepromazine/xylazine anesthesia (90 + 2 + 6 mg/ml, respectively) and an external jugular catheter was inserted for removal of blood samples (0.6 ml) at various times postoperatively. Plasma TNF-alpha was almost undetectable in decapitated rats and was near zero immediately following the placement of the jugular catheter (time zero [t0]). As the rats awakened from anesthesia, there was a rise in TNF-alpha at 30 min that peaked at 2 hr with a 400-fold increase and then precipitously declined 40-fold to a level still greater than zero at 3 hr. At 6 hr on the following morning, TNF-alpha values were near zero, but following connection of tubing and withdrawal of the initial blood sample, there was a 100-fold increase 1 hr later, followed by a decline over the next 3 hr. In contrast, plasma [NO/NO2] from decapitated rats was 117 microM. Values at tO were decreased and plummeted 4-fold within 30 min, then rose slightly in the ensuing 3 hr. At 6 hr on the next day [NO3/NO2] values were lower than at tO and declined gradually during the next 4 hr. Leptin gradually declined from pre-operative concentrations, reaching a minimum at 3 hr and its concentration was unaffected by the bleeding stress of the second day. We conclude that release of TNF-alpha, [NO3/NO2], and leptin are neurally controlled since plasma levels of all three declined as a result of anesthesia. TNF-alpha secretion was remarkably stress responsive, whereas NO release appeared to be suppressed by the combined operative and bleeding stress, and leptin was stress unresponsive.  相似文献   

15.
Circulating concentrations of thyroxine (T(4)) vary seasonally in many vertebrates. This study examined the seasonal variation in plasma concentrations of T(4) in juvenile American alligators (Alligator mississippiensis) from three populations in central Florida, USA. One site, Lake Woodruff National Wildlife Refuge, is considered a reference site whereas the other two lakes, Lake Apopka and Orange Lake, are significantly impacted by human activity. Juvenile American alligators ranging from 75-150 cm in total length were hand-captured at night from November 2000-April 2002. Plasma thyroxine concentrations were analyzed using a radioimmunoassay (RIA) previously validated for alligator plasma. Juvenile American alligators display seasonal variation in circulating T(4) concentrations. Plasma T(4) concentrations decrease from August/September to November and then begin a slow rise until April, at which point they plateau. Sex of juveniles influenced plasma concentrations of T(4) in some months but did not appear to alter the pattern in seasonal variation. The pattern we observed in plasma T(4) concentrations is not directly related to an environmental factor such as ambient temperature but is similar to that seen in plasma sex steroid concentrations during the reproductive cycle of adult alligators. Although the pattern and plasma concentration of T(4) exhibits significant variation among the three lakes studied, the pattern in seasonal variation appears similar. Comparing the seasonal pattern in plasma T(4) with plasma concentrations of sex steroids (testosterone and estradiol-17beta) or corticosterone could provide important information on the peripubescent life stage of the American alligator.  相似文献   

16.
Forty-week-old male broiler breeders were used in two experiments. Males were reared as recommended by the breeder, housed in individual cages, and cannulated to facilitate blood sampling. In experiment 1, blood samples were collected at 10- min intervals for 4 h commencing the day of cannulation (Day 0) and for 12 h on each of Days 1 and 2. In experiment 2, blood samples were collected at 10-min intervals for 8 h on Day 1. After centrifugation, plasma was stored at -20 degrees C until LH, FSH (experiment 1 and 2), testosterone, and corticosterone (experiment 1) concentrations were determined by RIA. Different statistical methods used to identify hormone secretion profiles revealed a characteristic pulsatile pattern of LH and FSH in plasma. However, LH pulses were more frequent and had greater amplitude than FSH pulses. Less than 32% of the FSH pulses were associated with LH episodes. Conversely, the association between LH and testosterone pulses averaged 83% in birds with testis weight greater than 10 g. Concentrations of corticosterone tended to increase after cannulation and remained elevated for only 3-4 h. Our data indicate that LH, FSH, and testosterone secretion is pulsatile in male broiler breeders. Additionally, LH pulses are associated with testosterone episodes but not with FSH pulses. The pulsatile pattern of FSH secretion, which is unique from those of LH, in adult males suggests that FSH secretion is independently regulated in the adult male fowl.  相似文献   

17.
Although the testosterone receptor antagonist flutamide restores the depressed immune function in males after trauma and hemorrhage, it remains unknown whether this agent has any salutary effects on adrenal function. To study this, male rats underwent laparotomy and were bled to and maintained at a blood pressure of 40 mmHg until 40% of the shed blood volume was returned in the form of Ringer lactate. Animals were then resuscitated and flutamide (25 mg/kg body wt) was administered subcutaneously. Plasma adrenocorticotropic hormone (ACTH) and corticosterone, as well as adrenal corticosterone and cAMP were measured 20 h after resuscitation. In additional animals, ACTH was administered and ACTH-induced corticosterone release and adrenal cAMP were determined. The results indicate that adrenal contents of corticosterone and cAMP were significantly decreased and morphology was altered after hemorrhage. Administration of flutamide improved corticosterone content, restored cAMP content, and attenuated adrenal morphological alterations. Flutamide also improved the diminished ACTH-induced corticosterone release and adrenal cAMP response at 20 h after hemorrhage and resuscitation. Furthermore, the diminished corticosterone response to ACTH stimulation in the isolated adrenal preparation was improved with flutamide. These results suggest that flutamide is a useful adjunct for improving adrenal function in males following trauma and hemorrhage.  相似文献   

18.
We have examined the role of glucocorticoids in the stress-induced inhibition of testicular steroidogenesis. Immobilization (3 hr) reduced plasma testosterone (T) levels to 24% of control values but did not affect plasma LH levels. This reduction was partially reversed by in vivo injections of the antiglucocorticoid, RU486, prior to the stress session at a dose of 10 mg/kg BW, but not at 1.0 or 50 mg/kg BW. Stressed rats that were treated with 10 mg/kg BW RU486 had twofold higher plasma T levels than vehicle-treated stressed animals. Injections of RU486 did not affect plasma LH levels in control or stressed rats and did not affect T levels of unstressed rats. Stressed rats had eightfold higher plasma corticosterone levels than controls, and RU486 had no effect on control or stress levels of corticosterone. The possible role of glucocorticoids in mediating the effect of stress on testicular T production was investigated also in vitro by incubating testicular interstitial cells from unstressed rats for 3 hr with corticosterone (0, 0.01, 0.1, or 1.0 microM) or dexamethasone (0, 0.001, 0.01, or 0.1 microM), followed by an additional 2 hr with hCG (0, 25, 50, or 100 microIU). Both corticosterone and dexamethasone inhibited hCG-stimulated T production in a dose-dependent manner. Cells incubated with the highest concentration of either of the glucocorticoids showed significantly reduced responses to hCG stimulation. In the absence of hCG, in vitro T production was not affected by dexamethasone or 0.01 and 0.1 microM corticosterone. However, the highest dose of corticosterone (1.0 microM) produced a 63% elevation in basal T production. Coincubation of testicular interstitial cells with corticosterone (1.0 microM) or dexamethasone (0.1 microM) and RU486 (0.01, 0.1, and 1.0 microM) reversed the glucocorticoid-induced suppressions of T production in a dose-dependent manner. Our results suggest that during stress increases in plasma levels of glucocorticoids in male rats act via glucocorticoid receptors on testicular interstitial cells to suppress the testicular response to gonadotropins, and that the decline of testosterone production during immobilization stress is in part mediated by a direct action of glucocorticoids on the testis.  相似文献   

19.
Blood samples from 30 female and 20 male adult desert tortoises, Gopherus agassizii, were collected at monthly intervals during the annual reproductive cycle (April to October). Plasma corticosterone and the sex steroids in each of the samples were analyzed by radioimmunoassay. Mean corticosterone levels in males were significantly higher than in females (P < 0.001) in every month. Male tortoises showed a marked seasonal pattern in plasma corticosterone with a highly significant peak in July, August, September, and October that corresponded with a similar peak in plasma testosterone. Testosterone and corticosterone in the male showed a highly significant correlation (P < 0.0001). The pattern of corticosterone in the female was less marked, with a significant peak in May during the mating and nesting season, but no association with the peak in estradiol in late summer was apparent. The highest levels of corticosterone in the males were associated with the peak in spermatogenesis and intense male-male combat. These results support similar data from other reptiles that suggest increased glucocorticoid secretion during periods of increased activity and metabolism.  相似文献   

20.
In birds, corticosteroid-binding globulin (CBG) binds corticosterone, progesterone and testosterone. The concentration of each ligand can alter the binding of the other ligands through competitive interactions. Thus, an increase in corticosterone or progesterone may displace testosterone bound to CBG, leading to an increase in bioactive free testosterone levels without affecting total testosterone levels in the circulation. Aggressive interactions increase plasma total testosterone levels in some birds but not in others. Here, we tested the hypothesis that aggressive encounters in the late breeding season would not increase total testosterone levels in plasma, but would alter CBG, total corticosterone or total progesterone levels in such a way as to modify the number of available binding sites and therefore occupancy by testosterone. A marked decrease in CBG occupancy by testosterone would indirectly suggest an increase in free testosterone levels in plasma. Wild male white-crowned sparrows were exposed to a simulated territorial intrusion (STI) or control for 30 min. Subjects were then caught and bled. We measured CBG using a ligand-binding assay and corticosterone, progesterone and testosterone using highly sensitive radioimmunoassays. STI significantly increased aggressive behaviors but did not affect plasma total testosterone levels. STI significantly increased plasma CBG and total corticosterone levels and decreased plasma total progesterone levels. We predict that CBG occupancy by corticosterone will increase slightly following an aggressive encounter. However, this small change is unlikely to increase free testosterone levels, because of the large number of seemingly unoccupied CBG binding sites in these subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号