首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight Junctions of the Blood–Brain Barrier   总被引:17,自引:0,他引:17  
1. The blood–brain barrier is essential for the maintainance and regulation of the neural microenvironment. The blood–brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood–brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels.2. Although blood–brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors.3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNF. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood–brain barrier characteristics. Additionally, cross-talk between components of the tight junction– and the cadherin–catenin system suggests a close functional interdependence of the two cell–cell contact systems.4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.  相似文献   

2.
The molecular identification, expression and cloning of membrane-bound organic cation transporters are being completed in isolated in vitro membranes. In vivo studies, where cation specificity overlaps, need to complement this work. Method: Cross-inhibition of [3H]choline and [3H]thiamine brain uptake by in situ rat brain perfusion. Results: [3H]Choline brain uptake was not inhibited by thiamine at physiologic concentrations (100 nM). However, choline ranging from 100 nM to 250 M inhibited [3H]thiamine brain uptake, though not below levels observed at thiamine concentrations of 100 nM. Conclusion: (1) The molecular family of the blood–brain barrier (BBB) choline transporter may be elucidated in vitro by its interaction with physiologic thiamine levels, and (2) two cationic transporters at the BBB may be responsible for thiamine brain uptake.  相似文献   

3.
Summary 1. Aims: Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood–brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC).2. Methods: BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans’ blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting.3. Results: AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell–cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure.4.Conclusions: AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.  相似文献   

4.
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.  相似文献   

5.
6.
Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.  相似文献   

7.
Neural Induction of the Blood–Brain Barrier: Still an Enigma   总被引:5,自引:0,他引:5  
1. The study of the blood–brain barrier and its various realms offers a myriad of opportunities for scientific exploration. This review focuses on two of these areas in particular: the induction of the blood–brain barrier and the molecular mechanisms underlying this developmental process.2. The creation of the blood–brain barrier is considered a specific step in the differentiation of cerebral capillary endothelial cells, resulting in a number of biochemical and functional alterations. Although the specific endothelial properties which maintain the homeostasis in the central nervous system necessary for neuronal function have been well described, the inductive mechanisms which trigger blood–brain barrier establishment in capillary endothelial cells are unknown.3. The timetable of blood–brain barrier formation is still a matter of debate, caused largely by the use of varying experimental systems and by the general difficulty of quantitatively measuring the degree of blood–brain barrier tightness. However, there is a general consensus that a gradual formation of the blood–brain barrier starts shortly after intraneural neovascularization and that the neural microenvironment (neurons and/or astrocytes) plays a key role in inducing blood–brain barrier function in capillary endothelial cells. This view stems from numerous in vitro experiments using mostly cocultures of capillary endothelial cells and astrocytes and assays for easily measurable blood–brain barrier markers. In vivo, there are great difficulties in proving the inductive influence of the neuronal environment. Also dealt with in this article are brain tumors, the least understood in vivo systems, and the induction or noninduction of barrier function in the newly established tumor vascularization.4. Finally, this review tries to elucidate the question concerning the nature of the inductive signal eliciting blood–brain barrier formation in the cerebral microvasculature.  相似文献   

8.
To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells.  相似文献   

9.
Summary 1. Alterations of brain microvasculature and the disruption of the blood–brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD).2. It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS.3. The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

10.
The incidence of testicular cancer, primarily seminoma, has been increasing in many countries, including the United States. The testis is often the site of residual cancer after adequate treatment with systemic chemotherapy. The blood-testis barrier is commonly cited as the explanation for residual tumor within the gonad after chemotherapy and as the indication for delayed orchiectomy. Conversely, complete eradication of viable tumor from the primary site is common and argues against the testis as a "tumor sanctuary." Residual tumor is also demonstrated within metastatic foci, and the disparity between the histopathologic response of the primary tumor and metastatic sites may be best explained by tumor heterogeneity and multiple tumor clones. Regardless of the scientific and academic arguments, delayed radical orchiectomy remains an important part of treatment for patients undergoing primary chemotherapy.  相似文献   

11.
Lipoprotein transport across the blood–brain barrier (BBB) is of critical importance for the delivery of essential lipids to the brain cells. The occurrence of a low density lipoprotein (LDL) receptor on the BBB has recently been demonstrated. To examine further the function of this receptor, we have shown using an in vitro model of the BBB, that in contrast to acetylated LDL, which does not cross the BBB, LDL is specifically transcytosed across the monolayer. The C7 monoclonal antibody, known to interact with the LDL receptor-binding domain, totally blocked the transcytosis of LDL, suggesting that the transcytosis is mediated by the receptor. Furthermore, we have shown that cholesterol-depleted astrocytes upregulate the expression of the LDL receptor at the BBB. Under these conditions, we observed that the LDL transcytosis parallels the increase in the LDL receptor, indicating once more that the LDL is transcytosed by a receptor-mediated mechanism. The nondegradation of the LDL during the transcytosis indicates that the transcytotic pathway in brain capillary endothelial cells is different from the LDL receptor classical pathway. The switch between a recycling receptor to a transcytotic receptor cannot be explained by a modification of the internalization signals of the cytoplasmic domain of the receptor, since we have shown that LDL receptor messengers in growing brain capillary ECs (recycling LDL receptor) or differentiated cells (transcytotic receptor) are 100% identical, but we cannot exclude posttranslational modifications of the cytoplasmic domain, as demonstrated for the polymeric immunoglobulin receptor. Preliminary studies suggest that caveolae are likely to be involved in the potential transport of LDL from the blood to the brain.The maintenance of the homeostasis of brain interstitial fluid, which constitutes the special microenvironment for neurons, is established by the presence of the blood–brain barrier (BBB)1 at the transition area from endothelial cells (ECs) to brain tissue. Of primary importance in the formation of a permeability barrier by these cells is the presence of continuous tight junctions that seal together the margins of the ECs and restrict the passage of substances from the blood to the brain. Furthermore, in contrast to ECs in many other organs, the brain capillary ECs contain no direct transendothelial passageways such as fenestrations or channels. But obviously, the BBB cannot be absolute. The brain is dependent upon the blood to deliver metabolic substrates and remove metabolic waste, and the BBB therefore facilitates the exchange of selected solutes. Carrier-mediated transport systems that facilitate the uptake of hexoses, amino acids, purine compounds, and mono-carboxylic acids have been revealed in the cerebral endothelium (Betz and Goldstein, 1978), but until now little information has come to light regarding the cerebral uptake of lipids.There is growing evidence that the brain is equipped with a relatively self-sufficient transport system for maintaining cholesterol and lipid homeostasis. The presence of a low density lipoprotein (LDL) receptor has been demonstrated by immunocytochemistry in rat and monkey brains; and apolipoprotein (apo) E and apo AI-containing particles have been detected in human cerebrospinal fluid (Pitas et al., 1987). Furthermore, enzymes involved in lipid metabolism have been located within the brain: LCAT mRNA has been shown to be expressed in rat brains and cholesteryl ester transfer protein, which plays a key role in cholesterol homeostasis, has been detected in human cerebrospinal fluid and seems to be synthesized in the brain (Albers et al., 1992). The distribution of the LDL receptor-related protein, a multifunctional receptor that binds apoE, is highly restricted and limited to the gray matter, primarily associated with neuronal cell population (Wolf et al., 1992). The difference in cellular expression of ligand (apoE) and receptor (LDL receptor-related protein) may provide a pathway for intracellular transport of apoE-containing lipoproteins in the central nervous system. All these data leave little doubt that the brain is equipped with a relatively self-sufficient transport system for cholesterol.Cholesterol could be derived from de novo synthesis within the brain and from plasma via the BBB. Malavolti et al. (1991) indicate the presence of unexpectedly close communications between extracerebral and brain cholesterol. Changes in the extracerebral cholesterol levels are readily sensed by the LDL receptor in the brain and promptly provoke appropriate modifications in its activity. Méresse et al. (1989a) provided direct evidence for the occurrence in vivo of an LDL receptor on the endothelium of brain capillaries. Furthermore, the fact that enzymes involved in the lipoprotein metabolism are present in the brain microvasculature (Brecher and Kuan, 1979) and that the entire fraction of the drug bound to lipoproteins is available for entry into the brain strongly suggest that this cerebral endothelial receptor plays a role in the interaction of plasma lipoproteins with brain capillaries. These results pinpoint the critical importance of the interactions between brain capillary ECs and lipoproteins. Owing to the fact that the neurological abnormalities that result from the inadequate absorption of dietary vitamin E can be improved by the oral administration of pharmacological doses of vitamin E, Traber and Kayden (1984) have suggested that LDL functions as a transport system for tocopherol to the brain. Furthermore, the trace amounts of apolipoprotein B that were detected by Salem et al. (1987) in cerebrospinal fluid from healthy patients using a very sensitive immunoblot technique confirm that, at most, small amounts of apolipoprotein B normally pass through the BBB. However, whether LDL is involved in the exchange is not known.Using an in vitro model of the BBB that imitates an in vivo situation by culturing capillary ECs and astrocytes on opposite sides of a filter (Dehouck et al., 1990a , 1992), we have demonstrated that in culture, like in vivo, in contrast to peripheral endothelium and in spite of the tight apposition of ECs and their contact with physiological concentrations of lipoproteins, brain capillary ECs express an LDL receptor (Méresse et al., 1991; Dehouck et al., 1994). The capacity of ECs to bind LDLs is greater when cocultured with astrocytes than in their absence. Futhermore, we have shown that the lipid requirement of astrocytes increases the expression of the LDL receptor on brain capillary ECs. Taken together, the presence of LDL receptors on brain capillary ECs and the modulation of the expression of these receptors by the lipid composition of astrocytes suggest that cholesterol used by cells in the central nervous system may be derived, at least in part, from the periphery via transport across the BBB.In the present study, we provide direct evidence that after binding to brain capillary ECs, there is a specific mechanism for the transport of LDL across the endothelial monolayer from the apical to the abluminal surface. This mechanism might be best explained by a process of receptor-mediated transcytosis. Preliminary results pinpoint the role of caveolae in the transcellular transport of LDL across the brain endothelium.  相似文献   

12.
The blood–brain barrier (BBB) is often affected in several neurodegenerative disorders, such as Alzheimer's disease (AD). Integrity and proper functionality of the neurovascular unit are recognized to be critical for maintenance of the BBB. Research has traditionally focused on structural integrity more than functionality, and BBB alteration has usually been explained more as a consequence than a cause. However, ongoing evidence suggests that at the early stages, the BBB of a diseased brain often shows distinct expression patterns of specific carriers such as members of the ATP-binding cassette (ABC) transport protein family, which alter BBB traffic. In AD, amyloid-β (Aβ) deposits are a pathological hallmark and, as recently highlighted by Cramer et al. (2012), Aβ clearance is quite fundamental and is a less studied approach. Current knowledge suggests that BBB traffic plays a more important role than previously believed and that pharmacological modulation of the BBB may offer new therapeutic alternatives for AD. Recent investigations carried out in our laboratory indicate that peroxisome proliferator-activated receptor (PPAR) agonists are able to prevent Aβ-induced neurotoxicity in hippocampal neurons and cognitive impairment in a double transgenic mouse model of AD. However, even when enough literature about PPAR agonists and neurodegenerative disorders is available, the problem of how they exert their functions and help to prevent and rescue Aβ-induced neurotoxicity is poorly understood. In this review, along with highlighting the main features of the BBB and its role in AD, we will discuss information regarding the modulation of BBB components, including the possible role of PPAR agonists as BBB traffic modulators.  相似文献   

13.
Impaired epithelial barrier function plays a crucial role in the pathogenesis of inflammatory bowel disease. Elevated levels of the pro-inflammatory cytokine, interferon-γ (IFNγ), are believed to be prominently involved in the pathogenesis of Crohn disease. Treatment of T84 intestinal epithelial cells with IFNγ severely impairs their barrier properties measured as transepithelial electrical resistance (TER) or permeability and reduces the expression of tight junction proteins such as occludin and zonula occludens-1 (ZO-1). However, little is known about the signaling events that are involved. The cellular energy sensor, AMP-activated protein kinase (AMPK), is activated in response to cellular stress, as occurs during inflammation. The aim of this study was to investigate a possible role for AMPK in mediating IFNγ-induced effects on the intestinal epithelial barrier. We found that IFNγ activates AMPK by phosphorylation, independent of intracellular energy levels. Inhibition of AMPK prevents, at least in part, the IFNγ-induced decrease in TER. Furthermore, AMPK knockdown prevented the increased epithelial permeability, the decreased TER, and the decrease in occludin and ZO-1 caused by IFNγ treatment of T84 cells. However, AMPK activity alone was not sufficient to cause alterations in epithelial barrier function. These data show a novel role for AMPK, in concert with other signals induced by IFNγ, in mediating reduced epithelial barrier function in a cell model of chronic intestinal inflammation. These findings may implicate AMPK in the pathogenesis of chronic intestinal inflammatory conditions, such as inflammatory bowel disease.Inflammatory bowel disease (IBD)2 consists of two major subgroups, ulcerative colitis and Crohn disease (CD). A complex cascade of genetic, immunological, and bacterial factors contributes to IBD pathogenesis (1). In the healthy intestine, the epithelial barrier separates the luminal bacterial microbiota and other aspects of the external environment from cells of the mucosal immune system. In CD in particular, an impaired epithelial barrier (2, 3) leads to increased exposure of the immune system to commensal bacteria. Along with possible genetic defects in bacterial sensing, this might contribute to a dysregulated immune response leading to further epithelial damage and active episodes of IBD (4). Epithelial barrier dysfunction in CD is characterized by alterations in intercellular tight junctions (5), as well as by an excessive loss of water and salt into the lumen. An important immunological marker in CD is the existence of excessively high levels of the pro-inflammatory cytokine, interferon gamma (IFNγ) (6).IFNγ treatment of intestinal epithelial cell monolayers severely compromises their barrier integrity. Most importantly from a functional perspective, IFNγ causes a decrease in transepithelial electrical resistance (TER) and increases epithelial permeability (7, 8). These defects closely resemble observations in CD, where there is a disruption of intercellular tight junctional complexes. This effect is due to disruption of the apical actin cytoskeleton in conjunction with decreased expression, as well as increased internalization, of important tight junction proteins such as occludin and zonula occludens-1 (ZO-1) (811). Conversely, induction of epithelial apoptosis by IFNγ is believed to contribute little to barrier dysfunction (12). IFNγ also induces further alterations in epithelial function that include reduced expression of various ion transporters and associated decreases in epithelial ion transport (13, 14). Despite the influence of IFNγ on a number of epithelial functions, relatively little is known about intracellular signaling mechanisms mediating its effects following receptor activation. Recent studies demonstrated the involvement of phosphatidylinositol 3′-kinase (PI3K) in mediating IFNγ-induced effects on epithelial barrier function (11, 15). However, this is unlikely to be the only regulatory pathway involved. Indeed, increased expression of receptors for tumor necrosis factor core family members, such as the tumor necrosis factor receptor and LIGHT (homologous to lymphotoxin, shows inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes), can also occur in response to IFNγ and lead to changes in intestinal barrier function (1618).The effects of IFNγ in intestinal epithelial cells resemble, at least in part, those of the cellular energy sensor, AMP-activated protein kinase (AMPK). Upon activation, AMPK restores intracellular ATP levels by stimulating energy-producing pathways, such as glucose uptake (19) and glycolysis, while inhibiting energy-consuming pathways, such as the synthesis of fatty acids or triglycerides (20, 21). In the intestine, energy-consuming processes include epithelial ion transport, and, indeed, AMPK has been shown to decrease intestinal ATP-consuming ion transport as well as the synthesis of various proteins (22, 23). Moreover, it has previously been demonstrated that ion transport processes are suppressed in intestinal biopsies from IBD patients (2426).AMPK is usually activated in response to cellular stress that depletes intracellular ATP and elevates the AMP:ATP ratio (27, 28). AMPK-activating conditions include oxidative stress (29), hypoxia (30), and hypoglycemia (31). Binding of AMP to AMPK causes an increase in activity of 5-fold or less (32). Further, binding of AMP to AMPK makes AMPK a better substrate for upstream kinase activation, resulting in phosphorylation of the catalytic α-subunit of AMPK on the Thr172 residue and subsequently in a 50- to 100-fold activation of the enzyme (32). A number of upstream kinases for AMPK have been identified, with LKB1 (33, 34) or calmodulin kinase II (3537) being the most important and well studied. However, recent studies also indicate that PI3K can activate AMPK (38, 39).The goal of this study was to determine whether AMPK mediates IFNγ-induced alterations in intestinal epithelial barrier function. We found that IFNγ activates AMPK in intestinal epithelial cells and AMPK inhibition prevents, at least in part, IFNγ-induced barrier dysfunction. Our data indicate a novel role for the cellular energy sensor, AMPK, in the regulation of intestinal epithelial barrier properties in a cell model of chronic inflammation. These findings may have implications for barrier function in the setting of chronic inflammatory processes, such as IBD.  相似文献   

14.
Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy.  相似文献   

15.
Coral Reefs - The Great Barrier Reef Expedition (1928–1929) observed two of the earliest known examples of coral bleaching during a 13-month stay on Low Isles, northern Great Barrier Reef,...  相似文献   

16.
The blood-epididymis barrier (BEB) is formed by epithelial tight junctions mediating selective permeability of the epididymal epithelium. Defective barrier function can disturb the balance of the epididymal milieu, which may result in infertility. The stroma of the epididymis contains high amounts of cytokines of the TGFβ family of unknown function. We screened possible effects of all three TGFβ isoforms on paracellular tightness in a BEB in vitro model based on the strongly polarized mouse epididymal epithelial MEPC5 cells in the transwell system. In this model we found a robust transepithelial electrical resistance (TER) of about 840 Ω x cm2. Effects on the paracellular permeability were evaluated by two methods, TER and FITC-Dextran-based tracer diffusion assays. Both assays add up to corresponding results indicating a time-dependent disturbance of the BEB differentially for the three TGFβ isoforms (TGFβ3>TGFβ1>TGFβ2) in a TGFβ-recetor-1 kinase- and Smad-dependent manner. The tight junction protein claudin-1 was found to be reduced by the treatment with TGFβs, whereas occludin was not influenced. Epididymal epithelial cells are predominantly responsive to TGFβs from the basolateral side, suggesting that TGFβ may have an impact on the epididymal epithelium from the stroma in vivo. Our data show for the first time that TGFβs decrease paracellular tightness in epididymal epithelial cells, thus establishing a novel mechanism of regulation of BEB permeability, which is elementary for sperm maturation and male fertility.  相似文献   

17.
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.  相似文献   

18.
With the use of a newly introduced technique, the "influx profile analysis," we studied the diffusion of tritiated water in and out of frog ovarian eggs at 25°C. The results show that the rate-limiting step in the exchange of labeled water is not permeation through the cell membrane but diffusion in the bulk of the intracellular water.  相似文献   

19.
We investigated the interaction of acetylcholinesterase (AChE) inhibitors with acetyl-L-carnitine (ALCAR) transporter at the blood-brain barrier (BBB). ALCAR uptake by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells), as an in vitro model of BBB, were characterized by cellular uptake study using [(3)H]ALCAR. In vivo brain uptake of [(3)H]ALCAR was determined by brain uptake index after carotid artery injection in rats. In results, the transport properties for [(3)H]ALCAR by TR-BBB cell were consistent with those of ALCAR transport by the organic cation/carnitine transporter 2 (OCTN2). Also, OCTN2 was confirmed to be expressed in the cells. The uptake of [(3)H]ALCAR by TR-BBB cells was inhibited by AChE inhibitors such as donepezil, tacrine, galantamine and rivastigmine, which IC(50) values are 45.3, 74.0, 459 and 800 μM, respectively. Especially, donepezil and galantamine inhibited the uptake of [(3)H]ALCAR competitively, but tacrine and rivastigmine inhibited noncompetitively. Furthermore, [(3)H]ALCAR uptake by the rat brain was found to be significantly decreased by quinidine, donepezil and galantamine. Our results suggest that transport of AChE inhibitors such as donepezil and galantamine through the BBB is at least partly mediated by OCTN2 which is involved in transport of ALCAR.  相似文献   

20.
1. Macromolecules cross capillary walls via large vascular pores that are thought to be formed by plasmalemmal vesicles. Early hypotheses suggested that vesicles transferred plasma constituents across the endothelial wall either by a shuttle mechanism or by fusing to form transient patent channels for diffusion. Recent evidence shows that the transcytotic pathway involves both movement of vesicles within the cell and a series of fusions and fissions of the vesicular and cellular membranes.2. The transfer of macromolecules across the capillary wall is highly specific and is mediated by receptors incorporated into specific membrane domains. Therefore, despite their morphological similarity, endothelial vesicles form heterogeneous populations in which the predominant receptor proteins incorporated in their membranes define the functions of individual vesicles.3. Blood–brain barrier capillaries have very low permeabilities to most hydrophilic molecules. Their low permeability to macromolecules has been presumed to be due to an inhibition of the transcytotic mechanism, resulting in a low density of endothelial vesicles.4. A comparison of vesicular densities and protein permeabilities in a number of vascular beds shows only a very weak correlation, therefore vesicle numbers alone cannot be used to predict permeability to macromolecules.5. Blood–brain barrier capillaries are fully capable of transcytosing specific proteins, for example, insulin and transferrin, although the details are still somewhat controversial.6. It has recently been shown that the albumin binding protein gp60 (also known as albondin), which facilitates the transcytosis of native albumin in other vascular beds, is virtually absent in brain capillaries.7. It seems likely that the low blood–brain barrier permeability to macromolecules may be due to a low level of expression of specific receptors, rather than to an inhibition of the transcytosis mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号