首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ClpP protease is essential for virulence and survival under stress conditions in several pathogenic bacteria. The clpP mutation in a murine infection model has demonstrated both attenuation of virulence and a sensitivity to hydrogen peroxide. However, the underlying mechanisms for these changes have not been resolved. Because macrophages play a major role in immune response and activated macrophages can kill microbes via oxygen-dependant mechanisms, we investigated the effect of the clpP mutation on its sensitivity to macrophage-mediated oxygen-dependant mechanisms. The clpP mutant derived from D39 (serotype 2) exhibited a higher sensitivity to oxidative stresses such as reactive oxygen intermediates, reactive nitrogen intermediates, and H2O2, but no sensitivity to osmotic stress (NaCl) and pH. Moreover, viability of the clpP mutant was significantly increased in murine macrophage cells by treatment with S-methylisothiourea sulfate, which inhibits inducible nitric oxide synthase (iNOS) activity and subsequently elicits lower level secretions of nitric oxide (NO). However, viability of wild type was unchanged. Taken together, these results indicate that ClpP is involved in the resistance to oxidative stresses after entrapment by macrophages and subsequently contributes to virulence via NO mediated pathway.  相似文献   

2.
3.
4.
Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.  相似文献   

5.
Streptococcus pneumoniae DnaJ is recognized as a virulence factor whose role in pneumococcal virulence remains unclear. Here, we attempted to reveal the contribution of DnaJ in pneumococcal virulence from the identification of its interacting proteins using co-immunoprecipitation method. dnaJ was cloned into plasmid pAE03 generating pAE03-dnaJ-gfp which was used to transform S. pneumoniae D39 strain. Then anti-GFP coated beads were used to capture GFP-coupled proteins from the bacterial lysate. The resulting protein mixtures were subjected to SDS-PAGE and those differential bands were determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. We finally obtained nine proteins such as DnaK, Gap, Eno, SpxB using this method. Furthermore, to confirm the interaction between DnaJ and these candidates, bacterial two-hybrid system was employed to reveal, for example, the interaction between DnaJ and DnaK, Eno, SpxB. Further protein expression experiments suggested that DnaJ prevented denaturation of Eno and SpxB at high temperature. These results help to understand the role of DnaJ in the pathogenesis of S. pneumoniae.  相似文献   

6.
In prokaryotic cells the ATP-dependent proteases Lon and ClpP (Clp proteolytic subunit) are involved in the turnover of misfolded proteins and the degradation of regulatory proteins, and depending on the organism, these proteases contribute variably to stress tolerance. We constructed mutants in the lon and clpP genes of the food-borne human pathogen Campylobacter jejuni and found that the growth of both mutants was impaired at high temperature, a condition known to increase the level of misfolded protein. Moreover, the amounts of misfolded protein aggregates were increased when both proteases were absent, and we propose that both ClpP and Lon are involved in eliminating misfolded proteins in C. jejuni. In order to bind misfolded protein, ClpP has to associate with one of several Clp ATPases. Following inactivation of the ATPase genes clpA and clpX, only the clpX mutant displayed the same heat sensitivity as the clpP mutant, indicating that the ClpXP proteolytic complex is responsible for the degradation of heat-damaged proteins in C. jejuni. Notably, ClpP and ClpX are required for growth at 42°C, which is the temperature of the intestinal tract of poultry, one of the primary carriers of C. jejuni. Thus, ClpP and ClpX may be suitable targets of new intervention strategies aimed at reducing C. jejuni in poultry production. Further characterization of the clpP and lon mutants revealed other altered phenotypes, such as reduced motility, less autoagglutination, and lower levels of invasion of INT407 epithelial cells, suggesting that the proteases may contribute to the virulence of C. jejuni.  相似文献   

7.
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol‐dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence‐associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY‐mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.  相似文献   

8.
Streptococcus pneumoniae (S. pneumoniae) is a major causative agent of respiratory disease in patients and can cause respiratory distress and other symptoms in severe cases. Pneumolysin (PLY) is a pore-forming toxin that induces host tissue injury and inflammatory responses. Sortase A (SrtA), a catalytic enzyme that anchors surface-associated virulence factors, is critical for S. pneumoniae virulence. Here, we found that the active ingredient of the Chinese herb Scutellaria baicalensis, wogonin, simultaneously inhibited the haemolytic activity of PLY and SrtA activity. Consequently, wogonin decreased PLY-mediated cell damage and reduced SrtA-mediated biofilm formation by S. pneumoniae. Furthermore, our data indicated that wogonin did not affect PLY expression but directly altered its oligomerization, leading to reduced activity. Furthermore, the analysis of a mouse pneumonia model further revealed that wogonin reduced mortality in mice infected with S. pneumoniae laboratory strain D39 and S. pneumoniae clinical isolate E1, reduced the number of colony-forming units in infected mice and decreased the W/D ratio and levels of the inflammatory factors TNF-α, IL-6 and IL-1β in the lungs of infected mice. Thus, wogonin reduces S. pneumoniae pathogenicity by inhibiting the dual targets PLY and SrtA, providing a treatment option for S. pneumoniae infection.  相似文献   

9.
10.
The identification of phytopathogen proteins that are differentially expressed during the course of the establishment of an infection is important to better understand the infection process. In vitro approaches, using plant extracts added to culture medium, have been used to identify such proteins, but the biological relevance of these findings for in planta infection are often uncertain until confirmed by in vivo studies. Here, we compared the proteins of Pectobacterium carotovorum ssp. carotovorum strain PccS1 differentially expressed in Luria–Bertani medium supplemented with extracts of the ornamental plant Zantedeschia elliotiana cultivar ‘Black Magic’ (in vitro) and in plant tissues (in vivo) by two‐dimensional electrophoresis coupled with mass spectrometry. A total of 53 differentially expressed proteins (>1.5‐fold) were identified (up‐regulated or down‐regulated in vitro, in vivo or both). Proteins that exhibited increased expression in vivo but not in vitro, or in both conditions, were identified, and deletions were made in a number of genes encoding these proteins, four of which (clpP, mreB, flgK and eda) led to a loss of virulence on Z. elliotiana, although clpP and mreB were later also shown to be reduced in growth in rich and minimal media. Although clpP, flgK and mreB have previously been reported as playing a role in virulence in plants, this is the first report of such a role for eda, which encodes 2‐keto‐3‐deoxy‐6‐phosphogluconate (KDPG) aldolase, a key enzyme in Entner–Doudoroff metabolism. The results highlight the value of undertaking in vivo as well as in vitro approaches for the identification of new bacterial virulence factors.  相似文献   

11.
12.
13.
Links between carbohydrate metabolism and virulence in Streptococcus pneumoniae have been recurrently established. To investigate these links further we developed a chemically defined medium (CDM) and standardized growth conditions that allowed for high growth yields of the related pneumococcal strains D39 and R6. The utilization of the defined medium enabled the evaluation of different environmental and nutritional factors on growth and fermentation patterns under controlled conditions of pH, temperature and gas atmosphere. The same growth conditions impacted differently on the nonencapsulated R6, and its encapsulated progenitor D39. A semi-aerobic atmosphere and a raised concentration of uracil, a fundamental component of the D39 capsule, improved considerably D39 growth rate and biomass. In contrast, in strain R6, the growth rate was enhanced by strictly anaerobic conditions and uracil had no effect on biomass. In the presence of oxygen, the difference in the growth rates was mainly attributed to a lower activity of pyruvate oxidase in strain D39. Our data indicate an intricate connection between capsule production in strain D39 and uracil availability. In this study, we have also successfully applied the in vivo NMR technique to study sugar metabolism in S. pneumoniae R6. Glucose consumption, end-products formation and evolution of intracellular metabolite pools were monitored online by 13C-NMR. Additionally, the pools of NTP and inorganic phosphate were followed by 31P-NMR after a pulse of glucose. These results represent the first metabolic profiling data obtained non-invasively for S. pneumoniae, and pave the way to a better understanding of regulation of central metabolism.  相似文献   

14.
Wang  Ling  Zhang  Xuemei  Wu  Guangying  Qi  Yuhong  Zhang  Jinghui  Yang  Jing  Wang  Hong  Xu  Wenchun 《Journal of microbiology (Seoul, Korea)》2020,58(4):330-339

Streptococcus pneumoniae is a Gram-positive pathogen with high morbidity and mortality globally but some of its pathogenesis remains unknown. Previous research has provided evidence that aminopeptidase N (PepN) is most likely a virulence factor of S. pneumoniae. However, its role in S. pneumoniae virulence and its interaction with the host remains to be confirmed. We generated a pepN gene deficient mutant strain and found that its virulence for mice was significantly attenuated as were in vitro adhesion and invasion of host cells. The PepN protein could induce a strong innate immune response in vivo and in vitro and induced secretion of IL-6 and TNF-α by primary peritoneal macrophages via the rapid phosphorylation of MAPK and PI3K/AKT signaling pathways and this was confirmed using specific pathway inhibitors. In conclusion, PepN is a novel virulence factor that is essential for the virulence of S. pneumoniae and induces host innate immunity via MAPK and PI3K/AKT signaling.

  相似文献   

15.
16.
17.
Genome‐wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn‐seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high‐content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi‐based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp‐proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP‐dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.  相似文献   

18.

Background  

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Previously, using comparative genomic analyses, 13 regions of genomic plasticity have been identified in the S. pneumoniae genome. These "Regions of Diversity" (RDs) accounted for half the genomic variation observed amongst all pneumococci tested, moreover, were determined to encode a variety of putative virulence factors. To date, genes within 5 RDs have been unequivocally demonstrated to contribute to S. pneumoniae virulence. It is unknown if the remaining RDs also contribute to virulence.  相似文献   

19.
20.
The capacity of a bacterial pathogen to produce a disease in a treated host depends on the former's virulence and resistance to antibiotics. Several scattered pieces of evidence suggest that these two characteristics can be influenced by bacterial metabolism. This potential relationship is particularly important upon infection of a host, a situation that demands bacteria adapt their physiology to their new environment, making use of newly available nutrients. To explore the potential cross‐talk between bacterial metabolism, antibiotic resistance and virulence, a Pseudomonas aeruginosa model was used. This species is an important opportunistic pathogen intrinsically resistant to many antibiotics. The role of Crc, a global regulator that controls the metabolism of carbon sources and catabolite repression in Pseudomonas, was analysed to determine its contribution to the intrinsic antibiotic resistance and virulence of P. aeruginosa. Using proteomic analyses, high‐throughput metabolic tests and functional assays, the present work shows the virulence and antibiotic resistance of this pathogen to be linked to its physiology, and to be under the control (directly or indirectly) of Crc. A P. aeruginosa strain lacking the Crc regulator showed defects in type III secretion, motility, expression of quorum sensing‐regulated virulence factors, and was less virulent in a Dictyostelium discoideum model. In addition, this mutant strain was more susceptible to beta‐lactams, aminoglycosides, fosfomycin and rifampin. Crc might therefore be a good target in the search for new antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号