首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation at a minimum absorbed dose of 250 Grays (Gy) has been approved by the USDA as a quarantine treatment for certain fruits in Hawaii to control four species of tephritid fruit flies. Subsequent research must determine whether this dose is sufficient to control other quarantine pests, such as mealybugs, thrips, mites, beetles, moths, and scale insects, on other commodities with export potential that are approved for irradiation treatment for fruit flies. This study demonstrated that irradiation at 250 Gy caused non‐emergence of eggs and pupae, failure of larval development, and sterility of adults of yellow flower thrips, Frankliniella schultzei (Trybom). Adults were the most resistant stage tested, with 100% mortality at 57, 36 and 30 days post‐treatment for the 250, 350 and 400 Gy treatments, respectively. Untreated adults survived up to 66 days. After receiving an irradiation dose of 250 Gy, no one‐ to two‐day old eggs hatched successfully, while 3–4‐day old eggs hatched but did not develop beyond the larval stage. Of the controls, 96.0% of 1–2‐day old eggs and 75.9% of the 3–4‐day old eggs hatched and survived through pupation. No first or second instar larvae treated with a target dose of 250 Gy were able to pupate. When pupae were irradiated at 250 Gy, 37% emerged as adults and all were sterile compared to 88.3% emergence of controls.  相似文献   

2.
Tephritid fruit flies comprise the most important group of quarantined pests of fresh produce. Most quarantine treatments of fresh agricultural commodities are directed against these pests, and considerable effort in detection, trapping, and population control is expended worldwide to prevent these pests from invading new territories. Ionizing radiation has been studied for 70 yr for its possible use as a quarantine treatment against fruit flies, but has only been applied commercially on a limited basis since 1995. The treatment has great potential and will probably be used extensively in the future as it is tolerated by more species of fruits than any other major treatment. The U.S. Department Agriculture, Animal and Plant Health Inspection Service only recently proposed allowing irradiation for fresh agricultural imports from other countries, and other countries are studying proposals to do likewise. In 1991, the International Consultative Group on Food Irradiation recommended a generic dose against all tephritid fruit flies of 150 Gy. This article examines the literature dealing with irradiation quarantine treatments against fruit flies and recommends minimum absorbed doses of 70 Gy for Anastrepha spp., 101 Gy for Bactrocera jarvisi and B. tryoni, and 150 Gy for all Tephritidae except when fruits have been stored in hypoxic atmospheres.  相似文献   

3.
Currently approved irradiation quarantine treatment doses for Bactrocera cucurbitae (Coquillet), melon fly; Ceratitis capitata (Wiedemann), Mediterranean fruit fly; and Bactrocera dorsalis (Hendel), oriental fruit fly, infesting fruits and vegetables for export from Hawaii to the continental United States are 210, 225, and 250 Gy, respectively. Irradiation studies were initiated to determine whether these doses could be reduced to lower treatment costs, minimize any adverse effects on quality, and support a proposed generic irradiation dose of 150 Gy for fruit flies. Dose-response tests were conducted with late third instars of wild and laboratory strains of the three fruit fly species, both in diet and in fruit. After x-ray irradiation treatment, data were taken on adult emergence, and adult female fecundity and fertility. Melon fly was the most tolerant of the three species to irradiation, and oriental fruit fly was more tolerant than Mediterranean fruit fly. Laboratory and wild strains of each species were equally tolerant of irradiation, and larvae were more tolerant when irradiated in fruit compared with artificial diet. An irradiation dose of 150 Gy applied to 93,666 melon fly late third instars in papayas resulted in no survival to the adult stage, indicating that this dose is sufficient to provide quarantine security. Irradiation doses of 100 and 125 Gy applied to 31,920 Mediterranean fruit fly and 55,743 oriental fruit fly late third instars, respectively, also resulted in no survival to the adult stage. Results support a proposed generic irradiation quarantine treatment dose of 150 Gy for all tephritid fruit flies.  相似文献   

4.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a quarantine pest of several solanaceous crops and tropical fruits that are treated using irradiation before export from Hawaii to the U.S. mainland. A dose of 150 Gy is approved as a generic irradiation treatment for tephritid fruit flies, but no confirmation of efficacy has been reported for B. latifrons. Dose response of B. latifrons was used to determine the most tolerant life stage and identify a dose that prevents adult emergence. Data indicated doses (plus 95% confidence limits) required to prevent adult emergence of 13.4 (10.0-29.6), 17.5 (14.4-24.8), and 88.1 (68.0-133.8) Gy for eggs, first instars and third instars, respectively. In large-scale confirmatory tests of the most radiotolerant life stage, a radiation dose of 150 Gy applied to B. latifrons late third instars in bell peppers (Capsicum annuum L.) resulted in no survival to the adult stage of 157,112 individuals, a treatment efficacy consistent with Probit 9-level mortality. The relative radiotolerance of melon fly Bactrocera cucurbitae Coquillet, and B. latifrons also was tested using a diagnostic radiation dose of 30 Gy. In diet, a mean of 6.9% of irradiated B. cucurbitae third instars developed to the adult stage, whereas no B. latifrons third instars developed to adults. In papaya, Carica papaya L., fruit, a mean of 3.3% of irradiated B. cucurbitae third instars developed to the adult stage, whereas 0.5% B. latifrons third instars developed to adults. This report supports the use of a generic radiation dose of 150 Gy in quarantine scenarios to control tephritid fruit flies on fresh commodities.  相似文献   

5.
Pupae of the Queensland fruit fly or Q‐fly Bactrocera tryoni (Froggatt) are irradiated routinely to induce reproductive sterility in adults for use in sterile insect technique programmes. Previous studies suggest that adult sexual performance and survival under nutritional and crowding stress are compromised by the current target dose of radiation for sterilization (70–75 Gy), and that improved mating propensity and survival under stress by irradiated males may be achieved by reducing the target sterilization dose without reducing the level of induced sterility. This raises the question of the amount by which the irradiation dose can be reduced before residual fertility becomes unacceptable. The present study measures the levels of residual fertility in male and female irradiated Q‐flies at different irradiation doses (20, 30, 40, 50, 60 and 70 Gy), and investigates the possibility that fecundity and fertility increase between 10–15 and 30–35 days post emergence. Male flies require a higher dose than females to induce sterility, with no residual fertility found in females irradiated at doses of 50 Gy or above, and no residual fertility found in males irradiated at doses of 60 Gy or above. Irradiated females are more fecund at 30–35 days post emergence than at 10–15 days. However, fertility does not increase between 10 and 15 days post emergence and 30–35 days, even at doses below 50 Gy. The present study shows that there is scope to reduce the target sterilization dose for Q‐flies below that of the current dose range (70–75 Gy) at the same time as retaining an adequate safety margin above radiation doses at which residual fertility can be expected.  相似文献   

6.
Studies were undertaken to determine whether irradiation treatment at 250 Gy, an accepted treatment for disinfestation of fruit flies in spindaceous fruits from Hawaii, would also disinfest fruit of two species of Cryptophlebia. Cryptophlebia illepida (Butler) was determined to be more tolerant of irradiation than Cryptophlebia ombrodelta (Lower); therefore, C. illepida was the focus for detailed tests. Using the criterion of success in developing to the adult stage, the pattern of tolerance to irradiation in C. illepida was generally eggs < early instars < late instars < pupae. The most tolerant stage potentially occurring in harvested fruits was late (fourth and fifth) instars. Development to adult was reduced slightly in late instars receiving an irradiation dose of 62.5 Gy, whereas development to adult was dramatically reduced in late instars receiving irradiation doses > or = 125 Gy. No C. illepida larvae receiving an irradiation dose > or = 125 Gy emerged as adults and produced viable eggs, indicating sterility can be achieved at doses well below 250 Gy. In large scale tests, when 11,256 late instars were irradiated with a target dose of 250 Gy, 951 pupated (8.4%) and none eclosed as adults. Within the pupal stage, tolerance increased with age; 7- to 8-d-old pupae (the oldest pupae tested) treated with an irradiation dose of 125 Gy produced viable offspring, whereas those treated with a dose of 250 Gy produced no viable offspring. Irradiation of adults with a target dose of 250 Gy before pairing and mating resulted in no viable eggs. Irradiation of actively ovipositing adult females resulted in no subsequent viable eggs. Therefore, the irradiation quarantine treatment of a minimum absorbed dose of 250 Gy approved for Hawaii's fruits will effectively disinfest fruits of any Cryptophlebia in addition to fruit flies.  相似文献   

7.
The role of symbiotic microbes in insects, especially the beneficial character of this interaction for insects, has received much attention in recent years as it has been related to important aspects of the host insects' biology such as development, reproduction, survival, and fitness. Among insect hosts, tephritid fruit flies are well known to form beneficial associations with their symbionts. To control these destructive agricultural pests, environmentally friendly approaches, like the sterile insect technique as a component of integrated pest management strategies, remain most effective. In this study, changes in the bacterial profile of mass‐reared oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), were examined in both larval and adult stages and also after irradiation by employing a 16S rRNA gene‐based Illumina sequencing approach. Proteobacteria was the prevalent bacterial phylum in non‐irradiated adults and larvae. Alphaproteobacteria was the most abundant class in larvae but almost absent in adults, which was dominated by Gammaproteobacteria. Firmicutes were present in both developmental stages but at lower relative abundance. At genus level, Acetobacter prevailed in the larval stage and members of the Enterobacteriaceae family in adults. Irradiated samples exhibited higher diversity and richness indices compared to the non‐irradiated oriental fruit flies, whereas no significant changes were observed between the two developmental stages of the non‐irradiated samples. Lactobacillus, members of the Orbacecae family, and Morganella were detected but to a lesser degree upon irradiation, whereas the relative abundance of Lactococcus and Orbus increased. The bacterial profile of larvae appeared to be different compared to that of adult B. dorsalis flies. The subsequent application of irradiation at the pupal stage led to the development of different microbiota between treated and untreated samples, affecting diversity and operational taxonomic unit composition. Irradiated samples of oriental fruit flies were characterized by higher species diversity and richness.  相似文献   

8.
The sterile insect technique relies on sterilization of males using ionizing radiation. Life cycle stage, and the environmental conditions under which irradiation is carried out are crucial to the provision of good‐quality insects. To identify an optimal radiation strategy for Glossina pallidipes Austen, 1903, 13‐day‐old males were irradiated at different doses in a nitrogen atmosphere. The following day the males were mated with 8‐day‐old virgin females. Pupal production of mated females was monitored for 6 weeks, and induced sterility was determined by probit analysis. Survival of the males that mated was also monitored. At least 95% sterility of irradiated males was achieved with a 158 Gy dose in nitrogen and a 125 Gy in air. Irradiation significantly lowered the probability of survival between 30 and 100 days of age (especially flies irradiated in air), but probabilities of survival were similar outside this period for irradiated and unirradiated flies. Exposure of 2‐ or 13‐day‐old males to sterilizing radiation induced similar levels of sterility in both air and nitrogen.  相似文献   

9.
Spotted wing drosophila (SWD) has emerged as a major invasive insect pest of small berry fruits in the Americas and Europe since the late 2000s. Thus, phytosanitary treatment of commodities for export is imperative to prevent the movement of viable SWD to newer areas. In the present study, all developmental stages of SWD were irradiated with different doses of gamma and electron beam radiation to assess developmental inhibition to identify potential quarantine doses of the radiations. Ionizing radiation induced developmental inhibition of all stages of SWD. The effective doses for 99% inhibition (ED99) of hatching, pupariation, and adult emergence from irradiated eggs for gamma radiation were 882, 395 and 39 Gy, respectively, compared with 2849, 687, and 41 Gy, respectively, for electron beam radiation. The ED99 for inhibition of pupariation and adult emergence in irradiated larvae were 703 and 47 Gy, respectively, for gamma radiation, and 619 and 33 Gy, respectively, for electron beam radiation. Pupal irradiation did not completely inhibit adult emergence, even at 300 Gy. However, irradiation with ≥100 Gy of puparia induced adult sterility, with no egg production at all. The ED99 for inhibition of F1 egg hatchability from adults irradiated with gamma radiation and electron beam radiation was estimated to be 424 and 125 Gy, respectively. The results of the present study suggest that gamma radiation and electron beam radiation are alternatives for phytosanitary treatment. Irradiation with 100 Gy could be suggested as a potential dose for egg, larval, and pupal quarantine treatment of SWD.  相似文献   

10.
Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.  相似文献   

11.
Two‐ to three‐day‐old male Drosophila melanogaster flies were irradiated with 1, 2, 4, 6, 8, 10, 20, 25, 30, 40 and 50 Gy doses of gamma radiation. The longevity and rate of development were observed for three successive generations to assess the impact of irradiation. The mean lifespan of irradiated flies was significantly increased at 1, 2 and 8 Gy, while it was vice versa for high doses at 30, 40 and 50 Gy. Paternal irradiation had an impact on F1 generation, with significantly increased mean longevity at 2 (female), 4, 6, 8 and 10 and decreased mean longevity at 40 and 50 Gy (male and female). Significant increase in the longevity was observed in the F2 generation of the 8 (male and female) and 10 Gy (male) irradiated groups, while decreased longevity was observed in F2 female progeny at 40 Gy. In the case of F3 progeny of irradiated flies, longevity did not show significant difference with the control. Paternal exposure to radiation had a significant impact on the mean egg to adult developmental time of the F1 generation; it was shortened at 2 Gy and extended at 25, 30, 40 and 50 Gy compared to the control. Mean development time at 30, 40 and 50 Gy was significantly increased in the F2 generation, while there were no significant changes in the F3 generation. The present study concludes that the effect of acute gamma irradiation on longevity and “egg to adult” development time of D. melanogaster may persist to following generations.  相似文献   

12.
Coconut scale, Aspidiotus destructor Signoret (Homoptera: Diaspididae), is a quarantine pest of banana (Musa spp.) and many tropical crops. Irradiation was examined as a potential phytosanitary treatment to control coconut scale. Dose-response tests were conducted with second-stage nymphs, adult females without eggs, and adult females with eggs at a series of irradiation doses between 60 and 200 Gy to determine the most tolerant stage. The adult female with eggs was the most tolerant stage. In large-scale validation tests and dose-response tests, a total of 32,716 adult female scales with eggs irradiated with doses between 100 and 150 Gy produced no F1 adults with eggs. Irradiation treatment with a minimum absorbed dose of 150 Gy should provide quarantine security for coconut scale on exported commodities.  相似文献   

13.
Irradiation postharvest phytosanitary treatments are used increasingly and show further promise because of advantages compared with other treatments. Its chief disadvantage is that, unlike all other commercially used treatments, it does not provide acute mortality, although it prevents insects from completing development or reproducing. The objective of this research was to determine to what extent irradiated egg and early instars of tephritids would develop to later instars that could be found by phytosanitary inspectors or consumers. Mexican fruit fly, Anastrepha ludens (Loew), eggs and first instars in grapefruit, Citrus paradisi Macfayden, were irradiated with 70-250 Gy and held at approximately equal to 27 degrees C until third instars completed development. The accepted minimum absorbed phytosanitary dose for this pest is 70 Gy, although higher doses may be applied under commercial conditions. The more developed a fruit fly before it was irradiated, the greater the proportion that survived to the third instar. Also, dose was inversely related to developmental success, e.g., a mean of approximately 65 and 35%, respectively, of late first instars reached the third instar when irradiated with 70 and 250 Gy. Of those, 65.1 and 23.4%, respectively, pupariated, although no adults emerged. Irradiation may result in a greater frequency of live (albeit incapable of resulting in an infestation) larvae being found than would be expected compared with other treatments that provide acute mortality. The regulatory community should be aware of this and the fact that it does not increase the risk of irradiation phytosanitary treatments resulting in an infestation of quarantine pests.  相似文献   

14.
Irradiation was examined as a potential phytosanitary treatment to control white peach scale, Pseudaulacaspis pentagona (Targioni-Tozzetti) (Homoptera: Diaspididae), a serious quarantine pest of papaya, Carica papaya L., in Hawaii. Dose-response tests were conducted with second-stage nymphs, adult females without eggs, and adult females with eggs at a series of irradiation doses between 60 and 150 Gy to determine the most tolerant stage. The adult female with eggs was the most tolerant stage. In large-scale validation tests 35,424 adult female scales with and without eggs irradiated at a dose of 150 Gy produced no F1 generation adults with eggs. Irradiation treatment with a minimum absorbed dose of 150 Gy should provide quarantine security for white peach scale on exported papaya and other commodities.  相似文献   

15.
The probit 9 standard for quarantine treatment efficacy (99.9968% mortality) was originally recommended for tropical fruits heavily infested with fruit flies and it centers on high mortality to achieve quarantine security. This standard may be too stringent for quarantine pests in commodities that are rarely infested or are poor hosts, The alternative treatment efficacy approach measures risk as the probability of a mating pair, gravid female, or parthenogenic individual surviving in a shipment. This will be a function of many factors including infestation rate and shipment volume. Applying the risk-based alternative treatment efficacy approach to pests on rarely infested or poor hosts will lower the number of required test insects needed for developing quarantine treatments; hence data for a quarantine treatment could be generated by testing 10,000 or fewer insects with no survivors, compared with 90,000-100,000 insects to demonstrate the traditional probit 9 efficacy. Several commodity/quarantine pest systems where this approach could be applied are discussed. This approach would save time and resources, and help farmers export their crop on a more-timely basis.  相似文献   

16.
The effects of irradiation on egg, larval, and pupal development, and adult reproduction in Mexican leafroller, Amorbia emigratella Busck (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae, and late pupae were irradiated at target doses of 60, 90, 120, or 150 Gy, or they were left untreated as controls in replicated factorial experiments. Survival to the adult stage was recorded. Tolerance to radiation increased with increasing age and developmental stage. A radiation dose of 90 Gy applied to neonates and early instars prevented adult emergence. A dose of 150 Gy was not sufficient to prevent adult emergence in late instars or pupae. The effect of irradiation on sterility was examined in late pupae and adult moths. For progeny produced by insects treated as late pupae, a total of three out of 3,130 eggs hatched at 90 Gy, 0 out of 2,900 eggs hatched at 120 Gy, and 0 out of 1,700 eggs hatched at 150 Gy. From regression analysis, the dose predicted to prevent egg hatch from the progeny of irradiated late pupae was 120 Gy, with a 95% confidence interval of 101-149 Gy. The late pupa is the most radiotolerant stage likely to occur with exported commodities; therefore, a minimum absorbed radiation dose of 149 Gy (nominally 150 Gy) has potential as a quarantine treatment. Reciprocal crosses between irradiated and unirradiated moths demonstrated that males were more radiotolerant than females. Irradiation of female moths at a target dose of 90 Gy before pairing and mating with irradiated or unirradiated males resulted in no viable eggs, whereas irradiated males paired with unirradiated females produced viable eggs at 90 and 150 Gy.  相似文献   

17.
A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.  相似文献   

18.
The sterile insect technique (SIT) requires production of large quantities of sterile males able to successfully compete with wild males for wild females. During eradication of a pest population, the release of fertile insects or capture of non‐marked released flies can have deleterious effects and trigger costly control measures. These perceived risks encourage program managers to apply high radiation doses and high doses of marking dye. In addition, mass rearing factories are strategically located away from release areas to prevent escape of fertile individuals within eradicated areas, raising the need for lengthy transport. Such is the case for Anastrepha obliqua Macquart (Diptera: Tephritidae) released in mango producing areas of Mexico under an SIT‐based eradication campaign. Here, we examined several standard quality‐control parameters for mass‐reared A. obliqua subjected to various time periods under hypoxia during transport, marked with different doses of fluorescent dye, and subjected to different radiation doses. Such factors were evaluated in isolation and in conjunction. Overall, long periods of hypoxia, high marking doses, and high radiation doses reduced the number of flying adults and increased the number of non‐emerged pupae. Some quality‐control parameters such as number of deformed adults, part‐emerged pupae, and non‐flying adults provided less informative guidance or redundant information of fly performance. Some tests such as mortality under stress and mating propensity in small cages were useless in detecting differences in quality among treatments for parameters evaluated during experiments. We discuss the quantity/safety‐quality/performance conflict during eradication using SIT, propose different strategies according to different stages during eradication (management, suppression, eradication, outbreaks in free areas), where males irradiated at low doses and marked with low doses of dye can be released during early suppression, and examine the pertinence of carrying out different quality‐control tests.  相似文献   

19.
【背景】橘小实蝇是水果国际贸易中被关注的有害生物。枇杷为福建名优水果,同时福建为橘小实蝇疫区,枇杷橘小实蝇的检疫处理技术是保证枇杷出口的关键环节。【方法】对人工接入枇杷果实中的橘小实蝇卵和幼虫的低温感受性、小规模处理和大规模处理及低温对枇杷果实品质的影响进行研究。【结果】橘小实蝇2—3龄幼虫混合虫态最耐受低温;1.5℃下处理12d,可完全杀死枇杷果实中的橘小实蝇,并且低温处理对枇杷果实无损伤。【结论与意义】低温可用于枇杷内橘小实蝇的检疫处理。  相似文献   

20.
Insects form an extremely large group of animals and bear a consequently large variety of associated microbes. This microbiota includes very specific and obligate symbionts that provide essential functions to the host, and facultative partners that are not necessarily required for survival. The Tephritidae is a large family that includes many fruit pests such as the Mediterranean fruit fly (the medfly, Ceratitis capitata) and the Olive fly (Bactrocera oleae). Community and functional analyses showed that the microbiota of both flies contribute to their diet, and affect host fitness parameters. The analysis of the microbiota's community structure of mass‐reared, sterilized medfly males used in the sterile insect technique revealed a strong reduction in Klebsiella spp. compared with non‐sterile and wild flies. Inoculation of sterile males with this gut population affected female mating behaviour as they preferentially mated with inoculated versus non‐inoculated males. These studies suggest that control can be significantly improved by manipulating symbionts in pest animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号