首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reduction of serum concentration in culture medium to 0,1% was proposed as a method of slowing division and DNA replication in Chinese hamster cells in vitro. Under these conditions the rate of DNA replication was reduced by more than one order of magnitude, while cell viability remained high enough (about 10%) for a long period up to 30 days. The spontaneous mutation rate to 6-mercaptopurine resistance, as calculated per day in cells with reduced DNA replication rate, was comparable to that in normally dividing cells [(1,2 +/- 0,3) X 10(-5) and (3,1 +/- 0,5) X 10(-5) per cell per day respectively]. This proves that a considerable fraction of spontaneous mutants arise independently on DNA replicative synthesis.  相似文献   

2.
The spontaneous rate of occurrence of two characters of malignant transformation was studied in mouse embryo fibroblasts C3H10T1/2, clone 8. This cell line, though "immortal" in vitro, is characterized by a normal phenotype in respect to many other properties. The spontaneous rate of occurrence of anchorage-independence (aga+) and dense foci on cell monolayer varied in different experiments from 0.65 X 10(-6) to 1.2 X 10(-6) and from 1.2 X 10(-6) to 3.6 X 10(-6) per cell per generation, respectively. The fluctuation test has shown that both characters occur as random spontaneous events. The altered colony morphology proved to be stable in all 28 foci of independent origin tested. In most cases, the morphological transformants were anchorage-independent. It is suggested that the occurrence of the characters studied is due to mutation in a gene with pleiotropic effect.  相似文献   

3.
Bloom's syndrome lymphocytes, which are characterized by a high incidence of sister chromatid exchanges (SCE: 80.6 per cell), were treated with mitomycin C (MMC) and the effect of the chemical on SCE frequency compared with that in normal cells. Raising the concentration of MMC from 1 X 10(-9) to 1 X 10(-7) g/ml led to about 10-fold increase (61.7 SCE per cell) in the SCE frequency over the base line in normal lymphocytes (6.4 SCE per cell), though chromosome aberrations remained at a relatively low frequency. MMC caused about a two-fold rise in SCE in cells of Bloom's syndrome (128.8 SCE at 10(-9) g/ml; 139.3 SCE at 10(-8) g/ml). The frequency of chromosome aberrations in Bloom's syndrome cells at concentrations of MMC of 1 X 10(-9) and 1 X 10(-8) g/ml was 0.350 and 0.825 per cell, respectively, and low when compared to the increased number of SCE. The increased frequency of SCE in normal and Bloom's syndrome cells is in contrast to the reported findings with cells from Fanconi's anemia and xeroderma pigmentosum. The distribution of SCE in MMC-treated normal cell correlates with that of spontaneous SCE in cells of Bloom's syndrome.  相似文献   

4.
Chromosome replication in Myxococcus xanthus.   总被引:7,自引:7,他引:0       下载免费PDF全文
The rates of DNA synthesis during the cell-division cycle were measured in Myxococcus xanthus growing in three different media permitting a twofold variation in doubling time. In all three media, simple DNA cycles were observed. Synthesis of DNA occurred during 85% of the cell-division cycle, independent of generation time, from 5 to 11 h. Cells were observed to contain one bacterial nucleoid at birth that later divided synchronously midway through the cell cycle. Nucleoid segregation appeared to begin before chromosome replication was completed. The DNA content of exponential-phase bacteria was determined to be about 20 +/- 3 X 10(-9) microgram per cell; newborn bacteria contained about 14 +/- 2 X 10(-9) microgram of DNA per cell. Exponential-phase bacteria showed about a 50% increase in DNA in the presence of chloramphenicol (50 microgram/ml). The number of randomly segregating chromosomes present in exponential-phase bacteria was determined by following the fate of prelabeled DNA during outgrowth in nonradioactive media. The results are consistent with a model in which cells are born with exactly one complete unreplicated chromosome. The molecular weight of such a chromosome is about 8.4 +/- 1.2 X 10(9).  相似文献   

5.
The mouse embryonal carcinoma cell line MC12 carries two X chromosomes, one of which replicates late in S phase and shares properties with the normal inactive X chromosome and, therefore, is considered to be inactivated. Since the hypoxanthine phosphoribosyl transferase (HPRT) gene on the active X chromosome is mutated (HPRT(NDASH;)), MC12 cells lack HPRT activity. After subjecting MC12 cells to selection in HAT medium, however, a number of HAT-resistant clones (HAT(R)) appeared. The high frequency of HAT resistance (3.18 x 10(-4)) suggested reactivation of HPRT(PLUS;) on the inactive X chromosome rather than reversion of HPRT(NDASH;). Consistent with this view, cytological analyses showed that the reactivation occurred over the length of the inactive X chromosome in 11 of 20 HAT(R) clones isolated. The remaining nine clones retained a normal heterochromatic inactive X chromosome. The spontaneous reactivation rate of the HPRT(PLUS;) on the inactive X chromosome was relatively high (1.34 x 10(-6)) and comparable to that observed for XIST-deleted somatic cells (Csankovszki et al., 2001), suggesting that the inactivated state is poorly maintained in MC12 cells.  相似文献   

6.
Various concentrations of oxygen were used to determine the optimum culture medium PO2 for survival and proliferation of attached human and mouse fibroblasts grown from different inoculum sizes. When T-15 flasks were seeded with less than or equal to 2 X 10(4) cells (less than or equal to 1.3 X 10(3) cells/cm2), the highest plating efficiencies and cell yields were obtained with a culture medium PO2 of 40-60 mm Hg. At higher inoculum sizes (10(5) cells per T-15) used routinely for mass cultured, no difference in cell yield or glycolytic activity was observed between cultures gassed with atmospheric, i.e., 18% O2 (growth medium PO2 approximately equal to 125-135 mm Hg) and those gassed with 1% O2 (growth medium PO2 approximately euqal to 40-60 mm Hg). The enhanced clonal growth observed at the latter PO2 results from an increased proliferation rate rather than more efficient attachment and survival of inoculated cells. Glucose uptake and lactic acid accumulation were increased in sparse cultures sparged with 1% O2. A slight extension of lifespan was observed in WI-38 cells serially subcultured with a gas phase of 1% O2.  相似文献   

7.
To investigate the mechanism by which the large T antigen (T-Ag) of polyomavirus and simian virus 40 can promote recombination in mammalian cells, we analyzed homologous recombination events occurring between two defective copies of the polyomavirus middle T (pmt) oncogene lying in close proximity on the same chromosome in a rat cell line. Reconstitution of a functional pmt gene by spontaneous recombination occurred at a rate of about 2 x 10(-7) per cell generation. Introduction of the polyomavirus large T (plt) oncogene into the cell line by DNA transfection promoted recombination very efficiently, with rates in the range of 10(-1) to 10(-2) per cell generation. Recombination was independent of any amplification of viral sequences and could even be promoted by the large T-Ag from simian virus 40, which cannot activate polyomavirus DNA replication. To explain the role of large T-Ag, we propose a novel mechanism of nonconservative recombination involving slipped-strand mispairing between the two viral repeats followed by gap repair synthesis.  相似文献   

8.
In Chinese hamster somatic cells, the spontaneous change of phenotype from 2-deoxygalactose sensitivity to resistance was studied using fluctuation test experiments à la Luria and Delbrück (1943) for four Chinese hamster cell strains derived from V79. The results are consistent with true mutational events. The mutation rates are in the range of 1 to 3.5 X 10(-5) per cell per generation. The relationship between the 2-deoxyglactose resistance and the galactokinase markers is discussed.  相似文献   

9.
The frequency of sister-chromatid exchange (SCE) was studied in Chinese hamster ovary (CHO) cell lines with stable insertions of the vector pIII-14gpt which contains 2 truncated neomycin resistance (neo) gene fragments. Recombination between regions of homology in the 2 fragments can restore a functional neo gene and make the cell resistant to the antibiotic G418, a neomycin analogue. Unequal SCE would be one of several possible mechanisms for this event. The observed spontaneous rate of formation of G418-resistant subclones was approximately 6.4 x 10(-6) per cell per generation, as compared to the estimated spontaneous frequency of 3 SCE per cell per generation. Given this SCE frequency, the probability of an SCE occurring in a target site of about 1600 bp (the distance separating the homologous regions in the neo fragments) would be about 8 x 10(-7) per cell per generation, or approximately one tenth of the estimated rate of recombination. Treatment of the cells with methyl methanesulfonate (MMS, 50 x 10(-6) M) induced about 80-90 SCE per cell, corresponding to a probability of 2 x 10(-5) SCE per 1600-bp target per cell. In the same cell culture, MMS treatment induced 4-8 x 10(-4) recombination events per cell giving rise to G418 resistance. Cells treated with HN2 (up to 4 x 10(-6) M) showed a significant increase in SCEs, but no change in the frequency of G418-resistant revertants. These results suggest that the 2 pathways leading to SCE and recombination respectively are uncoupled, and only a small fraction of the recombination events, if any, are due to unequal SCE in this system.  相似文献   

10.
Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 microM dexamethasone was acquired spontaneously at a rate of 2.6 X 10(-5) per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. Spontaneous acquisition of resistance to 0.1 mM 6-thioguanine appeared to occur at a much slower rate, 1.6 X 10(-6) per cell per generation. However, the expression time after MNNG mutagenesis for this resistant phenotype was greater than 11 days, suggesting that the different rates of acquisition for the two phenotypes measured by fluctuation analysis were the results of the disparate expression times. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than half of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.  相似文献   

11.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.  相似文献   

12.
The ability of a series of DNA-damaging agents to induce homologous intrachromosomal recombination between duplicated genes in the chromosome of mouse cells was investigated. The target cells were the thymidine kinase-deficient mouse L-cell strain 333M, which contains a single integrated copy of a plasmid with two herpes simplex virus thymidine kinase (Htk) genes, each containing an 8-base-pair XhoI linker inserted at a unique site. Expression of a functional Htk enzyme requires a productive recombinational event between the two nonfunctional genes. The spontaneous rate of recombination in this strain is 3 per 10(6) cells per generation. The agents tested represent physical carcinogens (UV and ionizing radiation), a simple alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), an alkylating cross-linking agent (mitomycin C), and a reactive metabolite of a polycyclic aromatic hydrocarbon ((+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene [BPDE] ). The background frequency of tk+ recombinants in the untreated population averaged 18 X 10(-6) +/- 5 X 10(-6). Ionizing radiation had little or no effect on recombination; exposure to mitomycin C, N-methyl-N'-nitro-N-nitrosoguanidine, BPDE, or UV, at doses that lowered the survival to between 90 and 10% of the control, caused a dose-dependent increase in frequency of recombinants, reaching 50 X 10(-6) to 100 X 10(-6). No tk+ cells could be generated with a control cell line that contained only one mutant copy of the Htk gene. Molecular hybridization analysis showed that 85 to 90% of the tk+ recombinants retained the Htk gene duplication, consistent with nonreciprocal transfer of wild-type genetic information, gene conversion. In the rest, only a single copy of the Htk gene remained, reflecting a single reciprocal exchange within a chromatid or a single unequal exchange between sister chromatids. Each recombinant tested contained an XhoI-resistant (wild-type) Htk gene.  相似文献   

13.
J E Shaw  L A Baglia    K Leung 《Journal of virology》1988,62(9):3415-3421
The characteristics of two tamarin (Saguinus oedipus) B-cell lines (sfBIT and sfBT) growth-transformed by Epstein-Barr virus (EBV) that proliferate continuously in serum-free medium are described. sfBIT was established by selecting cells for growth in RPMI 1640 supplemented with insulin, transferrin, and selenium (J. E. Shaw, R. G. Petit, and K. Leung, J. Virol. 61:4033-4037, 1987). sfBT, a subline of sfBIT cells reported here for the first time, required transferrin as the only protein supplement for continuous growth in RPMI 1640. Growth of sfBT cells was linear with human transferrin at 10(-2) to 10 micrograms/ml. Transferrin at 5 micrograms/ml yielded a culture density of 5 X 10(5) to 1 X 10(6) cells per ml, a cell doubling time of 2 to 3 days, and a culture viability greater than 95%. sfBIT and sfBT cells released transforming virus during continuous growth in serum-free culture medium without EBV-inducing agents. The spent medium of both serum-free lines supported cell growth at low culture density (1 x 10(4) to 5 X 10(4) cells per ml), but growth was arrested at low culture density with fresh serum-free medium. A procedure to measure growth-promoting activity (GPA) was established, and it revealed that the GPA of spent medium was greater than that of fresh medium for both serum-free cell lines. When fresh and spent media were dialyzed (molecular weight cutoff, 3,500) and subsequently concentrated by lyophilization, only the GPA of spent medium increased. We conclude that maintenance of growth transformation of tamarin cells latently infected with EBV is mediated by growth factors that are entirely autocrine in origin.  相似文献   

14.
Synchronous Chinese hamster ovary cells were irradiated in G1 or S phase. Colony survival in Alpha MEM medium with dialyzed serum was determined with or without 15 mug/ml 8-azaguanine (AG). An expression period of over three generations (multiplicity of 20) was utilized, with expression times ranging from 58 to 114 h. Both G1 and S phase were practically identical in sensitivity to X-ray-induced mutations, with mutant frequency/viable cell/rad ranging from 1 X 10(-7) (75-100 rad) to 8 X 10(-7) (1000 rad). The spontaneous mutation rate, shown by Luria-Delbruck fluctuation analysis, was 5 X 10(-7) per generation. Thirty-three mutants, isolated at random and grown for over 30 generations in the absence of AG, were analyzed for plating efficiency (PE) in different concentrations of AG or in hypoxanthine-aminopterin-thymidine (HAT) medium. Of these, 64% were resistant (PE greater than 0.1) to 7.5 mug/ml AG, 85% to 5.0 mug/ml, and 91% to 3.5 mug/ml. Only 42% showed possible hypoxanthine-phosphoribosyltransferase (hprtase) deficiency as evidenced by HAT sensitivity (PE less than 0.1). Wild type controls exhibited PE's in 3.5 mug/ml AG of less than 0.001 and in HAT of greater than 0.5. Of ten mutants studied, all demonstrated survival response to radiation similar to wild type cells (D0 of approx. 120 rad). For radiation protection standards, the radiation dose required to induce mutations at a rate equal to that occurring spontaneously is called the doubling dose. The doubling dose observed for acute irradiation was about 3 rad and was estimated to be 10-60 rad for chronic irradiation, similar to that often reported for in vivo studies.  相似文献   

15.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

16.
We have investigated the vitellogenin (VTG) receptor system in Xenopus oocytes since these cells are specialized for endocytosis. Oocytes have between 0.2 and 3 X 10(11) receptors per 1-mm cell. There is only a single class of receptors of low affinity (1.3 X 10(-6) M at 22 degrees C and 2-4 X 10(-6) M at 0 degree C), but high specificity (less than 5% nonspecific binding at 2 X 10(-6) M). The specific internalization rate of the VTG receptor (around 2 X 10(-3) s-1) is first order, highly variable, and at the upper end of the range of values reported for mammalian cells. The receptor association rate constant (9.6 X 10(2) M-1 s-1) is extremely low although the dissociation rate constant was immeasurable. Calcium is required for VTG binding, and low pH does not dissociate the VTG-receptor complex. Monensin treatment at 100 microM caused the loss of surface receptors with a t1/2 of 3 h and the accumulation of internalized ligand in a "pre-lysosomal" endocytic compartment. Conversely, the recovery of surface VTG receptors that were removed with trypsin occurred with a t1/2 of about 2 h. These observations indicate that oocytes have very large intracellular pools of receptors and that although surface receptors are internalized on the time scale of minutes, the intracellular pool is recycled on the time scale of hours.  相似文献   

17.
Lactobacillus acidophilus strain 100-33, originally isolated from swine faeces, was transformed to rifampicin resistance with DNA from spontaneous rifampicin-resistant mutants derived from it. Cells of the recipient strain were treated with lysozyme and mutanolysin, mixed with donor DNA and polyethylene glycol and grown on a regeneration medium overnight. After 48 h incubation, the numbers of rifampicin-resistant cells in the populations of regenerated cells were estimated from numbers of colonies. Efficiency of the lysozyme/mutanolysin treatment (the ratio of the number of osmotically fragile cells after the enzyme treatment to the initial cell number) was about 99%. The regeneration frequency of the enzyme-treated cells varied from 5 to 67%. The transformation frequency varied from about 0.2 X 10(-8) to 8.0 X 10(-8) transformants per regenerated cell per microgram DNA. To our knowledge, this method for genetic transformation is the first to be reported for a Lactobacillus strain.  相似文献   

18.
The technique of flash photolysis was used to study cellular variations in the number of photoreactivating enzyme (PRE) molecules during the cell division cycle of the UV-sensitive E. coli strain BS?1. No variations in the number of PRE molecules per genome were observed throughout the cell division cycle when synchronized cells cultured in either glucose-minimal or succinate-minimal medium were used. This is interpreted to mean that PRE synthesis is continuous throughout the cell cycle for glucose-grown cells, but may stop at the time chromosome replication ceases prior to division, in succinate-grown cells. The effect of growth rate and stage of growth on cellular PRE content in asynchronous cultures was also determined. Variations in the number of PRE per genome were observed for both synchronous and asynchronous cells cultured in different media and occurred in a manner that suggested a dependence on growth rate. PRE per genome increased with generation time. Stationary phase cells from each culture medium (nutrient broth, glucose-minimal, succinate-minimal) had more PRE per genome than did respective log phase cells. It is suggested that PRE synthesis may be controlled by some aspect of chromosome replication.  相似文献   

19.
Ohmi Ohnishi 《Genetics》1977,87(3):529-545
Polygenic mutations affecting viability were accumulated on the second chromosome of Drosophila melanogaster by treating flies with EMS in successive generations. The treated chromosomes were later made homozygous and tested for their effects on viability by comparison of the frequency of such homozygotes with that of other genotypes in the same culture. The treated wild-type chromosomes were kept heterozygous in Pm/+ males by mating individual males in successive generations to Cy/Pm females. The number of generations of accumulation was 1 to 30 generations, depending on the concentration of EMS. A similar experiment for spontaneous polygenic mutations was also conducted by accumulating mutations for 40 generations. The lower limit of the spontaneous mutation rate of viability polygenes is estimated to be 0.06 per second chromosome per generation, which is about 12 times as high as the spontaneous recessive lethal mutation rate, 0.005. EMS-induced polygenic mutations increase linearly with the number of treated generations and with the concentration of EMS. The minimum mutation rate of viability polygenes is about 0.017 per 10(-4)m, which is only slightly larger than the lethal rate of 0.013 per 10(-4) m. The maximum estimate of the viability reduction of a single mutant is about 6 to 10 percent of the normal viability. The data are consistent with a constant average effect per mutant at all concentrations, but this is about three times as high as that for spontaneous mutants. It is obvious that one can obtain only a lower limit for the mutation rate, since some mutants may have effects so near to zero that they cannot be detected. The possibility of measuring something other than the lower limit is discussed. The ratio of the load due to detrimental mutants to that caused by lethals, the D/L ratio, is about 0.2 to 0.3 for EMS-induced mutants, as compared to about 0.5 for spontaneous mutants. This is to be expected if EMS treatment produces a large fraction of small deletions and other chromosome rearrangements which are more likely to be lethal.  相似文献   

20.
Cell killing and the induction of mutation were studied in dividing and non-dividing human skin fibroblasts as a result of treatment by 8-methoxypsoralen (8-MOP) and long-wave UV irradiation (UVA). The cytotoxic effect was highly dependent upon the duration of the UVA exposure. The frequency of mutations increased linearly with the UVA dose at concentrations of 10 and 0.25 microliter 8-MOP/ml, the latter representing the concentration in the skin during PUVA treatment. The number of mutations induced per unit dose (= per microgram 8-MOP/ml per joule UVA/m2) was calculated: for dividing cells this value was 3.3 X 10(-8) per cell and for non-dividing cells 0.6 X 10.8(-8) per cell. On the basis of these values the expected number of induced mutants in the human skin per session of photochemotherapy is 1.2 X 10(-5), and per 30 years of maintenance therapy 1.3 X 10(-2) per cell. A comparison was made between this frequency and the frequency to be expected from spontaneous mutation. In addition the significance of absence in patients of SCE induction by photochemotherapy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号