首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six neuron types are distinguished in the pars intercerebralis of the starved fifth instar of Rhodnius prolixus. All neuron types contain electron dense secretory granules derived from Golgi complexes which are of characteristic size and morphology in each type. The neuron types are not thought to represent stages in a secretory cycle. The variety of neuron types described is related to that revealed by staining sections of the same cells with paraldehyde fuchsin. Active synthesis of neurosecretory granules continues throughout starvation and the lysosomal system appears to be involved in the continual degradation of secretory granules. Some of the variations in granule morphology observed may be a consequence of granule fusion and the importance of cytoplasmic events in the development of neurosecretory granules is discussed.  相似文献   

2.
Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule’s volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed ‘unit granules’, forming granules whose volumes are multiples of the unit granule’s volume. Mutations which perturb this process can cause significant pathology. For example, Chediak–Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak–Higashi syndrome and in ‘beige’ (Lystbg/Lystbg) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule–granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules permit the cells to store large amounts of material without requiring the amount of membrane necessary to package the same amount of cargo into small granules. In addition, the formation of mature secretory granules that are multimers of unit granules provides a mechanism for mixing in large granules the contents of unit granules which differ in their content of cargo.  相似文献   

3.
H Steffens 《Malacologia》1979,18(1-2):527-532
In early September most of the neurons of the buccal ganglia of Helix pomatia contain neurosecretory material as membrane bound granules. There is only one, in exceptional cases 2 types of granules per cell. This suggests that different types of granules do not change into one another, and that each granule type contains a different secretory product. One granule type contains PAF-positive neurosecretory material, another one catecholamines, but most of the granules cannot be associated with special substances. The identified giant neurons B1-B4 contain granules in less density than the smaller neurons. B1 and B2 resemble each other in their granule type, whereas both B3 and B4 differ from B1 and B2.  相似文献   

4.
Compound versus multigranular exocytosis in peritoneal mast cells   总被引:5,自引:0,他引:5       下载免费PDF全文
We have used the whole-cell patch-pipette technique to measure the step increases in the cell membrane capacitance (equivalent to the membrane area) caused by the fusion of secretory granules in degranulating murine mast cells. We have observed that up to 30% of the total membrane expansion caused by degranulation results from large fusion events that cannot be explained by the fusion of single secretory granules. These large events are observed mainly in the initial phase of a degranulation. We have developed a simple mathematical model for a mast cell to test whether these large events are caused by a stimulus-induced, granule-to-granule fusion that occurs before their exocytosis (multigranular exocytosis). Our results suggest that the large fusion events are caused by the exocytosis of granule aggregates that existed before stimulation and that are located at the cell's periphery. We propose a novel mechanism by which granule aggregates can be formed at the periphery of the cell. This mechanism relies on the ability of a transiently fused granule ("flicker") to fuse with more internally located granules in a sequential manner. This pattern may result in the formation of larger peripheral granules that later on can fuse with the membrane. The formation of peripheral granule aggregates may potentiate a subsequent secretory response.  相似文献   

5.
Islet cell autoantigen (ICA) 512 is a novel autoantigen of insulin-dependent diabetes mellitus (IDDM) which is homologous to receptor-type protein tyrosine phosphatases (++PTPases). We show that ICA 512 is an intrinsic membrane protein of secretory granules expressed in insulin-producing pancreatic beta-cells as well as in virtually all other peptide-secreting endocrine cells and neurons containing neurosecretory granules. ICA 512 is cleaved at its luminal domain and, following exposure at the cell surface, recycles to the Golgi complex region and is sorted into newly formed secretory granules. By immunoprecipitation, anti-ICA 512 autoantibodies were detected in 15/17 (88%) newly diagnosed IDDM patients, but not in 10/10 healthy subjects. These results suggest that tyrosine phosphorylation participates in some aspect of secretory granule function common to all neuroendocrine cells and that a subset of autoantibodies in IDDM is directed against an integral membrane protein of insulin-containing granules.  相似文献   

6.
Summary A histological, histochemical and ultrastrucutral study of the pars intercerebralis (PI) has been made in Locusta migratoria. The acellular neural lamella is made up of an elastic tissue and collagen fibrils. The cells of the perilemma contain numerous lysosome structures and lipid granules.Three different types of neurosecretory cells (NSC A, B and C) have been distinguished in the PI associated with giant neurons.The cells termed A and B seem not to have an activity cycle during the two last larval instars. At the moment of sexual maturity the NSC A show an important accumulation of neurosecretory material and their number increases at the expense of the NSC B. The NSC A, which are characterized by a highly developped endoplasmic reticulum, contain numerous secretory granules which appear to be individualized in the Golgi complex in three different ways. The NSC B, with a reduced endoplasmic reticulum and an almost quiescent Golgi complex, contain abundant lysosome structures and more seldom some neurosecretory granules. In fact, the study of the fine structure shows different intermediate types, linking in a continuous way typical A cells and typical B cells. NSC A and NSC B might correspond to two opposed stages of secretory activity of one single cell type: the A cell representing the activity stage and the B cell the quiescent stage.NSC C show an accumulation of their neurosecretory products in relation to metamorphosis and sexual maturity. Ultrastructural evidence confirms their neurosecretory activity.A mode of regulating neurosecretion in NSC A and B by internal catabolism of the secretion and formation of lysosome like structures is discussed in the present paper.The giant neurons, which are surrounded by a glial envelope (trophospongium), contain several dense granules originated from Golgi complex.  相似文献   

7.
The two major proteins of secretory granules of secretory cells, chromogranins A (CGA) and B (CGB), have previously been proposed to play key roles in secretory granule biogenesis. Recently, CGA was reported to play an on/off switch role for secretory granule biogenesis. In the present study we found CGB being more effective than CGA in inducing secretory granule formation in non-neuroendocrine NIH3T3 and COS-7 cells. The mean number of dense core granules formed/cell of CGA-transfected NIH3T3 cells was 2.51, whereas that of CGB-transfected cells was 4.02, indicating the formation of 60% more granules in the CGB-transfected cells. Similarly, there were 55% more dense core granules formed in the CGB-transfected COS-7 cells than in the CGA-transfected cells. Moreover, transfection of CGA- and CGB-short interfering RNA (siRNA) into neuroendocrine PC12 cells not only decreased the amount of CGA and CGB expressed but also reduced the number of secretory granules by 41 and 78%, respectively, further suggesting the importance of CGB expression in secretory granule formation.  相似文献   

8.
The neurosecretory type-II cell (NS-II cell) group of each brain hemisphere consists of three kinds of cells: two small cells, six large ones, and two others having characteristic vacuolated endoplasmic reticulum (ER).Ultrastructural changes of large NS-II cells were observed through the fifth instar and diurnally when short-day and long-day larvae were compared. There were little differences between short-day and long-day larvae in cell structures on corresponding developmental days except for daily changes, but remarkable changes were observed every day through the instar. A secretory cycle through the instar was supposed being based on the ultrastructural changes in NS-II cells: reduced secretory activity on the first day, formation of organelles necessary for the synthesis of secretory materials throughout the instar on the second day, active synthesis and secretion of secretory material during the middle stage (third-fourth day), and reversion to a reduced level of cell activity after the cessation of feeding.In short-day larvae on the third to fourth day, NS-II cells contained large aggregates of secretory granules during the day except for the time of 13 hr after the onset of photophase when a decrease of secretory granules occurred. In long-day larvae, only a small amount of secretory granules was observed at 8 and 13 hr after the onset. Rough ER changed daily paralleling with the quantitative change of the secretory granules.Based on these differences of daily changes in NS-II cell activity between short-day and long-day larvae, it was concluded that photoperiodic time measurement of diapause induction depends on the daily secretory cycle entrained by the photoperiods during the larval stage.  相似文献   

9.
Garlov PE 《Tsitologiia》2002,44(8):747-767
Mass accumulation and storage of neurosecretory products are typical only for nonapeptidergic elements, as it has been shown by our study of the structure and function in neurosecretory cells of different nature. All liberinergic, statinergic and monoaminergic neurosecretory cells keep constancy in the state of high functional activity of extrusive processes at normal conditions. Morpho-functional features of these elements principally differ from those of nonapeptidergic neurosecretory cells, which are characterized by remarkable secretory cycles. The extremely large size of elementary secretory granules, maximum development of the Herring bodies, various modes of secretion, secretory and extrusive cycles in neurosecretory function, and massive accumulation of neurosecretory granules occurring in neurosecretory terminals finally, all these characters are considered to be the primary features of a high plasticity of the nonapeptidergic neurosecretory cell. A high reactivity of nonapeptidergic neurosecretory cells has been demonstrated here by the quantitative ultrastructural research of the dynamics of functional activity of neurosecretory terminals at both experimental and physiological stressful states. The highest plasticity of nonapeptidergic neurosecretory cells compared to all other neurosecretory cell types may be provided by their ability to restore the initial law level of functional activity, referred to as "functional reversion".  相似文献   

10.
Isomerization of the third amino acid residue (a phenylalanine) of crustacean hyperglycemic hormone (CHH) has been previously reported to occur as a late step of hormone precursor maturation in a few neurosecretory cells in the X-organ-sinus gland complex of the crayfish Orconectes limosus. In the present report, using conformation-specific antisera combined with immunogold labeling, we have studied, at the ultrastructural level, the distribution of L- and D-CHH immunoreactivity in CHH-secreting cells of the crayfish Astacus leptodactylus. Two CHH-secreting cell populations were observed, the first one (L-cells), the most numerous, exhibited only labeling for L-CHH. In the second one (D-cells), four secretory granule populations were distinguished according to their labeling: unlabeled, either L- or D- exclusively or both L- and D-granules. Labeling quantification by image analysis in D-cells showed a marked increase in D-labeling from the cell body to the axon terminal. However some L- and mixed granules remain in axon terminals. Our results demonstrate that Phe3 isomerization of CHH occurs within the secretory granules of specialized neurosecretory cells and progresses as the granules migrate along the axonal tract. The observation that not all the CHH synthesized is isomerized, and the great variability in the proportion of L- and D-immunoreactivity in granules in every cell region may suggest an heterogeneous distribution of the putative enzyme involved in Phe3 isomerization, a peptide isomerase, within the secretory pathway.  相似文献   

11.
Islet cell autoantigen of 69 kDa (ICA69) is a cytosolic protein of still unknown function. Involvement of ICA69 in neurosecretion has been suggested by the impairment of acetylcholine release at neuromuscular junctions upon mutation of its homologue gene ric-19 in C. elegans. In this study, we have further investigated the localization of ICA69 in neurons and insulinoma INS-1 cells. ICA69 was enriched in the perinuclear region, whereas it did not co-localize with markers of synaptic vesicles/synaptic-like microvesicles. Confocal microscopy and subcellular fractionation in INS-1 cells showed co-localization of ICA69 with markers of the Golgi complex and, to a minor extent, with immature insulin-containing secretory granules. The association of ICA69 with these organelles was confirmed by immunoelectron microscopy. Virtually no ICA69 immunogold labeling was observed on secretory granules near the plasma membrane, suggesting that ICA69 dissociates from secretory granule membranes during their maturation. In silico sequence and structural analyses revealed that the N-terminal region of ICA69 is similar to the region of arfaptins that interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. ICA69 is therefore a novel arfaptin-related protein that is likely to play a role in membrane trafficking at the Golgi complex and immature secretory granules in neurosecretory cells.  相似文献   

12.
The mechanism of secretory granule formation and exocytosis in the endocrine cells of normal and transplanted rat pancreas was studied using electron microscopy. On the one hand, formation of secretory granules starts with the dilatation of the 2 ends or the vesicularization of the middle parts of rough endoplasmatic reticulum (RER). On the other hand, prohormone ribosomes condense into the vesicles of the GOLGI apparatus. This probably indicates that the GOLGI complex is not the only source of formation of secretory granules. Exocytosis occurs with the formation of an electron dense streak between the perigranular membrane and the apical cell membrane. This is followed by the rupture of the streak at this midpoint allowing the granule to extrude into the space between the cell membrane and the parenchymal basal membrane. This fusion-rupture-extrusion mechanism repeats itself at the parenchymal and capillary basal membranes and also at the endothelium until it gets into the capillary lumen, showing that hormones of pancreatic endocrine cells may be actively transported into circulation as intact secretory granules. There is no significant morphological difference between the mechanism of secretory granule formation in normal and transplanted pancreatic tissue.  相似文献   

13.
Summary The individual granules of enterochromaffin cells of normal and reserpine treated guinea pigs have been studied by staining slides of the duodenum first by an argentaffin method and subsequently by an argyrophile method. Some argentaffin cells can be shown to contain not only argentaffin granules, but also granules that are purely argyrophile. The relative number of such argentaffin cells is greatly increased following administration of reserpine, as depletion of their 5-hydroxytryptamine content converts argentaffin granules into purely argyrophile ones. On the basis of this finding it is confirmed that the argyrophile granule is merely an argentaffin granule depleted of its 5-HT content, and that the argyrophile (nonargentaffin) and the argentaffin cells represent different phases of a secretory cycle.This investigation was supported by a grant from the Indian Council of Medical Research. I am grateful to Ms. Ciba of India Ltd. for making available reserpine (Serpasil) and solvent for reserpine. It is a pleasure to thank Mr. Anand Parkash for technical assistance and Mr. M. L. Sharma for the photographs.  相似文献   

14.
M V Ugryumov 《Tsitologiia》1975,17(4):407-413
Herring bodies were revealed in the reorganized hypophyseal stalk of rats two months after hypophysectomy both in normal laboratory condition and under salt load. We observed Herring bodies with a storage of neurosecretory granules and neurohormones, as well as with massive destruction and disappearance of neurosecretory granules due to release of hormones in neuroplasm. Many Herring bodies were characterized by degenerative changes probably associated with aging of neurosecretory cells or their lesion due to the operation. Occasionally we revealed Herring bodies which contained a network of dilated neurotubules, that probably reflected either the reparative phase of secretory cycle of corresponding neurosecretory cells or restoration of their functions after hypophysectomy. Herring bodies were often situated around capillaries, but they were separated from perivascular space with narrow sprouts of pituicytes.  相似文献   

15.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

16.
S Molloy  C Bruns  S Arch 《Peptides》1987,8(5):829-836
The bag cell neurons of Aplysia californica synthesize and secrete several neuropeptides. To gain more detailed information about their posttranslational routing and transport, we have undertaken isolation of the neurosecretory granules (NSG). Extracts of radiolabeled cells were subjected to discontinuous, isosmotic density-gradient centrifugation. Radiolabeled peptides likely to be contained in NSG were found to relocate from the starting zone and to be associated with particulate structures. Assay of enzyme markers for lysosomes and endoplasmic reticulum disclosed gradient distributions that differed from that shown by the peptides. Hence, it is probable that the position of peak concentrations of particulate peptides represents the location of NSG. Of particular interest is the further observation that the known secretory peptides ELH and AP do not evidence strict covariance across the gradient. This deviation from covariance is consistent with hypotheses that the peptides are in different associations with the NSG cores or that more than one type of neurosecretory granule is produced in the bag cells.  相似文献   

17.
Summary The light- and electronmicroscopical structure of neurones, glial cells, extra cellular spaces, and perineurium were investigated in the different sex phases of Crepidula fornicata L. (males, intersexes, females). The electronmicroscopical structures of the granules, present in all nerve cells, are very heterogeneous and similar to those of cytosomes. The origin, growth, and structural changes of the cytosomes are described and their probable function is discussed. The topographical position of the neurosecretory cells in the cerebral ganglia is constant. The secretory products of these cells are transported along the axons partly by a small neurosecretory pathway, but the neurosesecretory system of Crepidula (Prosobranchia) is not so highly developed as that in the cerebral ganglia of other gastropods (for example in pulmonates). The glial cells can be devided into two types according to their different staining, the electronmicroscopical structure of their granules and their position in the central neuropil or in the peripheral layer of nerve cells. The intersexual phase is marked by a more evident content of neurosecretory material and more and larger granules in the peripheral glial cells.

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

18.
Chromogranin B (CgB, also called secretogranin I) is a secretory protein sorted to secretory granules in a wide variety of endocrine cells and neurons. Unexpectedly, after stimulation of regulated secretion in the neuroendocrine cell line PC12, a fraction of the exocytosed CgB was not released into the medium but remained associated with the plasma membrane. The addition of exogenous CgB to unstimulated cells did not result in the appearance of cell surface CgB, suggesting that the presence of cell surface CgB could not be accounted for by adsorption of released CgB to the cell surface. Upon further incubation of stimulated PC12 cells, the surface CgB was internalized by the cells and largely degraded. The surface CgB was not released by exposure to pH 11, yet it partitioned in the aqueous phase upon Triton X-114 phase separation. Subcellular fractionation and differential extraction studies showed that the membrane-associated CgB constituted at least 10% of the total cellular CgB. These observations suggest that (a) the appearance of CgB at the cell surface is due to fusion of secretory granules with the plasma membrane and (b) a fraction of CgB is present in tight association with the secretory granule membrane. We propose a model in which membrane-associated CgB, by virtue of its ability to interact in a homophilic manner with soluble CgB, plays a key role in the sorting and targeting of CgB to the regulated pathway.  相似文献   

19.
鲫鱼尾部神经分泌系统显微和亚显微结构的季节性变化   总被引:5,自引:0,他引:5  
鲫鱼尾部神经分泌系统的神经分泌细胞和它的轴突中可观察到各种不同电子密度的颗粒。在性腺各个不同的发育阶段,该系统的分泌物具有累积、充满、释放和恢复这样一种周期性变化,由此说明鲫鱼的尾部神经分泌系统和它的生殖有关。  相似文献   

20.
The application of anti-cyclo-oxygenase and anti-prostaglandin E2 immunoglobulins to A23187-stimulated rat connective tissue mast cells has permitted the localization of cyclooxygenase activity (prostaglandin H2 synthetase) and the site of prostaglandin E2 (PGE2) formation in the secretory granules. Because binding was carried out after stimulation but before dehydration and embedding, we have limited the loss of these antigens due to normal degradation and to aqueous and solvent washes. As this method permits labeling of exposed cell surfaces, only granules that have been exteriorized can be labeled. Contrary to what might have been expected, no labeling was associated with plasma membranes or with any portion of damaged cells. Antibodies to PGE2 were bound evenly over the surface of the granule matrix, whereas antibodies to cyclo-oxygenase appeared to be bound to strands of proteo-heparin projecting from the surface of the granule matrix. Where granule matrix had become unraveled and dispersed, label appeared to adhere throughout the ribbon-like proteo-heparin strands. These results support our previous conclusion that the secretory granule is the site of the arachidonic acid cascade during exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号