首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
The ontogeny of the L-glutamate (GLU) and gamma-aminobutyric acid (GABA) neuronal systems in the guinea pig hippocampus was investigated with respect to tissue amino acid content, and spontaneous and K(+)-stimulated release of GLU and GABA. Transverse hippocampal slices were prepared from the guinea pig fetus at day 45 (brain growth spurt), 55 and 63 of gestation (term, about 68 days), from the 5-days-old neonate, and from the young adult. GLU and GABA release was determined as efflux from hippocampal slices into Krebs'-bicarbonate medium using a dynamic, submerged, superfusion apparatus. Hippocampal GLU content decreased during development, whereas GABA content was constant for all the ages investigated. The magnitude of spontaneous GLU efflux decreased during development; there was no measurable spontaneous GABA efflux. The K+ concentration-GLU efflux response curve was bell-shaped for the fetus at the three selected gestational ages, and was curvilinear for the neonate and adult. The apparent EC75 of K(+)-stimulated GLU efflux was higher for the neonate and adult compared with the fetus. In contrast, the K+ concentration-GABA efflux response curve was curvilinear, and the apparent EC75 of K+ was similar for all the ages investigated. K(+)-stimulated efflux of GLU and GABA was Ca++ dependent, but this was not the case for spontaneous GLU efflux. These data indicate that, in the guinea pig hippocampus, the GLU neuronal system is developing throughout gestation, whereas the GABA neuronal system appears to mature before the brain growth spurt.  相似文献   

2.
The effects of the GABA antagonist picrotoxin, and the GABA agonist muscimol, have been studied in chronically instrumented unanaesthetized fetal sheep of 115-132 days gestation. Picrotoxin (300-400 micrograms/kg intravenous bolus injection) induced a period of stimulated breathing (40-112 min) which was associated with high voltage electrocortical activity, but inhibited by hypoxia. Muscimol (4 mg infused) had the opposite effect and caused a prolonged period of apnoea (85-418 mins) which was followed by a rebound period of increased breathing. These observations suggest that the GABA-ergic system may be involved in the apnoea of high voltage sleep states in the late gestation fetal sheep, but not in the apnoea associated with hypoxaemia in the fetus.  相似文献   

3.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.  相似文献   

4.
The effect of hypobaric hypoxaemia on the concentration of metabolic substrates in the ovine fetus and pregnant ewe with implanted vascular catheters, was investigated. At 120 to 141 days of gestation sheep were subjected to hypobaria (mean fetal carotid PO2 12.7 +/- 0.7 torr; n = 9) or normobaria (mean fetal carotid PO2 22.7 +/- 0.7 torr; n = 11; P less than 0.001). At 141 days gestation mean fetal weight was 3.46 +/- 0.72 kg in the hypobaric group compared to 4.15 +/- 0.51 in the normobaric group (P less than 0.05). Concentrations of glucose in maternal and fetal plasma and fructose in fetal plasma were similar in hypobaric and normobaric fetuses. The concentration of lactate in fetal plasma rose from 1.68 +/- 1.34 to 8.79 +/- 5.8 mmol/l (P less than 0.001) within 24 h of onset of hypoxia, but fell to 3.36 +/- 1.13 mmol/l by day 3 of treatment, though still significantly above the concentration of lactate in the control fetuses (1.47 +/- 0.47; P less than 0.001). There was no significant effect of hypoxia on the concentration of lactate or alanine in maternal plasma. Alanine concentration in the plasma of fetuses subjected to hypoxia significantly increased within 24 h of exposure (0.28 +/- 0.10 vs 0.58 +/- 0.39 mmol/l; P less than 0.01) and remained elevated for the duration of the study. There was no significant effect of gestational age on the concentration of metabolic substrates in either the control or experimental groups. Hypoxia is associated with a sustained rise in the concentration of plasma lactate and alanine in the fetus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
cDNAs for ovine surfactant-associated protein (SP) A, SP-B, and SP-C have been cloned and shown to possess strong similarity to cDNAs for surfactant apoproteins in other species. These reagents were employed to examine the effect of fetal hypoxia on the induction of surfactant apoprotein expression in the fetal lamb. Postnatal lung function is dependent on adequate growth and maturation during fetal development. Insulin-like growth factor (IGF) I and IGF-II, which are present in all fetal tissues studied, possess potent mitogenic and proliferative actions, and their effects can be modulated by IGF-specific binding proteins (IGFBPs). Hypoxia can lead to increases in circulating cortisol and catecholamines that can influence lung maturation. Therefore, the effects of mild hypoxia in chronically catheterized fetal lambs at gestational days 126-130 and 134-136 (term 145 days) on the expression of pulmonary surfactant apoproteins and IGFBPs were examined. Mild hypoxia for 48 h resulted in an increase in plasma cortisol that was more pronounced at later gestation, and in these animals, there was a twofold increase in SP-A mRNA. SP-B mRNA levels also increased twofold, but this was not significant. SP-C mRNA was not altered. No significant changes in apoprotein mRNA were observed with the younger fetuses. However, these younger animals selectively exhibited reduced IGFBP-5 mRNA levels. IGF-I mRNA was also reduced at 126-130 days, although this conclusion is tentative due to low abundance. IGF-II levels were not affected at either gestational age. We conclude that these data suggest that mild prolonged fetal hypoxia produces alterations that could affect fetal cellular differentiation early in gestation and can induce changes consistent with lung maturation closer to term.  相似文献   

6.
The uterine uptake of amino acids was studied in 10 pregnant sheep with gestational ages of 114-146 days. After recovery from surgery, arterial and uterine venous samples were drawn simultaneously via indwelling catheters and analysed for amino acid and oxygen content. In seven ewes, amino acid concentrations were measured by a chromatographic technique. In four ewes, glutamate and glutamine arterio-venous differences across the uterine and umbilical circulations were measured by an enzymatic method. The uptake of neutral and basic amino acids was 66 mumol/mmol O2 and 17.3 mumol/mmol O2, respectively. Comparison of uterine and umbilical uptake shows that the bulk of the neutral and basic amino acids taken up by the pregnant uterus are transferred to the fetus. there was no significant uptake of acidic amino acids (i.e. glutamate, aspartate and taurine). glutamate was delivered from the fetus to the placenta but excretion of glutamate into the uterine circulation was negligible. Glutamine and asparagine were delivered to the fetus in amount which were two to three times larger than the placental uptake of glutamate and aspartate. Therefore placental conversion of exogenous glutamate and aspartate to glutamine and asparagine cannot account entirely for the fetal uptake of these amino acids.  相似文献   

7.
Diaphragmatic electromyographic activity, tracheal and amniotic fluid pressures, lung liquid flow, and carotid and jugular venous pressures were measured on eight fetal lambs who survived for periods of 9-43 days postoperatively. The fetal gestational age ranged from 98 to 113 days at operation. Respiratory center output of the fetus as indicated by electromyographic activity was modified by the following stimuli. It was suppressed by anesthesia and fetal hypoxia (Pao2 = 12 mmHg), tonically reduced by lung inflation, and stimulated by cyanide injections (150-600 mug) into the fetal jugular vein. Neuromuscular transmission to the diaphragm was blocked with d-tubocurarine (0.2-0.6 mg). These experiments indicate that central and motor pathways to the diaphragm are sufficiently mature by 101 days in the fetal sheep to permit their output to be modified by chemical and mechanical stimuli.  相似文献   

8.
Twenty fetal lambs were studied in utero using continuous wave Doppler ultrasound to analyse the fetal umbilical artery flow velocity waveforms. Satisfactory waveforms were obtained. Prepregnancy surgical removal of uterine caruncles was used to produce intrauterine fetal growth retardation in 14 of these ovine pregnancies of whom 8 delivered a small for gestational age fetus. In only one fetus was the umbilical artery flow velocity waveform abnormal with a high systolic diastolic ratio. We conclude that the growth restriction occurring in the ovine fetus following a reduction of placental implantation sites is not related to a restriction in the fetoplacental circulation and this is different from the most frequently observed human fetal growth retardation.  相似文献   

9.
Growth-contingent alterations in potassium and sodium fluxes, ouabain binding, and potassium ion content were examined following serum stimulation of quiescent, density-inhibited chicken embryo fibroblasts. Serum stimulation resulted in very rapid 1.5- to 1.8-fold increases in ouabain-sensitive potassium influx and lesser 1.4- to 1.5-fold increases in potassium efflux and sodium influx. Potassium influx stimulation was maximal after addition of 5–20% calf serum and was unaffected by cycloheximide inhibition of protein synthesis. Reflecting the slightly greater stimulation of potassium influx versus potassium efflux, potassium ion levels were 10–15% higher in serum-stimulated compared to unstimulated cells. Specific ouabain binding levels in stimulated and unstimulated control cells were initially similar, however, by four hours after stimulation a 40–50% increase in specific ouabain binding was observed. Incubation with ouabain was found also to inhibit later serum-stimulated hexose uptake and thymidine incorporation; this blockage may be a consequence of subnormal potassium levels rather than ouabain inhibition of the serum-stimulated potassium influx.  相似文献   

10.
The effects of structural analogues, excitatory amino acids and certain drugs on spontaneous and potassium-stimulated exogenous taurine and GABA release were investigated in mouse cerebral cortex slices using a superfusion system. Spontaneous efflux of both amino acids was rather slow but could be enhanced by their uptake inhibitors. Taurine efflux was facilitated by exogenous taurine, hypotaurine, -alanine and GABA, whereas GABA, nipecotic acid and homotaurine effectively enhanced GABA release. The stimulatory potency of the analogues closely corresponded to their ability to inhibit taurine and GABA uptake, respectively, indicating that these efflux processes could be mediated by the carriers operating outwards. Glutamate induced GABA release, whereas taurine efflux was potentiated by aspartate, glutamate, cysteate, homocysteate and kainate. The centrally acting drugs, including GABA agonists and antagonists, as well as the proposed taurine antagonist TAG (6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide), had no marked effects on spontaneous taurine and GABA release. Potassium ions stimulated dosedependently both taurine and GABA release from the slices, the responses of taurine being strikingly slow but sustained. Exogenous GABA and nipecotic acid accelerated the potassium-stimulated GABA release, whereas picrotoxin and bicuculline were ineffective. The potassium-stimulated taurine release was unaltered or suppressed by exogenous taurine and analogues, differing in this respect from GABA release. The apparent magnitude of the depolarization-induced GABA release is thus influenced by the function of membrane transport sites, but the same conclusion cannot be drawn with regard to taurine. Haloperidol and imipramine were able to affect the evoked release of both taurine and GABA.  相似文献   

11.
Direct Adrenal Medullary Catecholamine Response to Hypoxia in Fetal Sheep   总被引:2,自引:1,他引:1  
The present study was designed to investigate the direct response of fetal adrenomedullary cells to hypoxia, and the possible change in this responsiveness with maturation. Ovine fetal adrenomedullary cells, when exposed to 30 min of hypoxia induced by perfusing with Krebs-Henseleit solution equilibrated with 1% O2, released significantly greater amounts of total catecholamine into the perfusate, compared to basal conditions. After a 1-h control period, a second 30-min hypoxic episode stimulated a catecholamine response which was significantly smaller in magnitude than the first. Following the two hypoxic episodes, the cells were capable of responding to 50 mM KCl with a large increase in total catecholamine release. During the first hypoxic episode, the release of both norepinephrine and epinephrine was stimulated by equal magnitude. Fetal adrenomedullary cells obtained from fetuses at 100, 120, and 130 days gestation showed similar responsiveness to the same hypoxic stimulus, and these responses were not different from that observed in maternal adrenomedullary cells. On the contrary, responsiveness to KCl-induced depolarization was greatest in cells obtained from fetuses at 130 days gestation when compared to that in the younger fetuses. This increased responsiveness to KCl was accompanied by a greater catecholamine store in the adrenal medulla of the fetuses at this gestational age. These results suggest that ovine fetal adrenomedullary cells can respond directly to hypoxia by releasing catecholamines. This direct responsiveness became desensitized after repeated exposure. Finally, a decrease in direct responsiveness to hypoxia associated with maturation could be demonstrated.  相似文献   

12.
Glucocorticoids have been shown to be essential for the excessive fat deposition and development of obesity in several animal models. This study was performed to characterize the role of glucocorticoids in the developmental regulation of adipose tissue metabolism. On day 70 of gestation, pig fetuses were hypophysectomized by micro-cauterization. Hypophysectomized fetuses were implanted subcutaneously with hydrocortisone pellets or received no hormone replacement. Fetuses were removed by laparotomy on day 90 of gestation. Additional fetuses were hypophysectomized on day 70, implanted with hydrocortisone pellets on day 90 and removed on day 105 of gestation. Several intact fetuses were also implanted subcutaneously with hydrocortisone pellets during this later gestational period. Serum cortisol concentrations were reduced in hypophysectomized pigs at both fetal ages and were restored to intact levels by hydrocortisone treatment. Hydrocortisone supplementation enhanced lipolytic response to isoproterenol in intact fetuses but failed to restore lipolytic response to isoproterenol in hypophysectomized animals at either fetal age. Hydrocortisone induced a slight increase in lipogenesis in hypophysectomized fetuses when administered from 70 to 90 days of gestation and a more dramatic increase when administered from days 90 to 105 of gestation. However, hydrocortisone had no effect on basal or insulin stimulated lipogenesis in intact fetuses when administered from days 90 to 105 of gestation. These results indicate that hydrocortisone may have a primary influence on adipose tissue metabolism during late fetal development only in the absence of inhibition from counterregulatory hormones of pituitary origin.  相似文献   

13.
14.
Abstract: Taurine, cysteinesulfinic acid decarboxylase (CSAD), glutamate, γ-aminobutyric acid (GABA), and glutamic acid decarboxylase (GAD) were measured in subcellular fractions prepared from occipital lobe of fetal and neonatal rhesus monkeys. In addition, the distribution of [35S]taurine in subcellular fractions was determined after administration to the fetus via the mother, to the neonate via administration to the mother prior to birth, and directly to the neonate at various times after birth. CSAD, glutamate, GABA, and GAD all were found to be low or unmeasurable in early fetal life and to increase during late fetal and early neonatal life to reach values found in the mother. Taurine was present in large amounts in early fetal life and decreased slowly during neonatal life, arriving at amounts found in the mother not until after 150 days of age. Significant amounts of taurine, CSAD, GABA, and GAD were associated with nerve ending components with some indication that the proportion of brain taurine found in these organelles increases during development. All subcellular pools of taurine were rapidly labeled by exogenously administered [35S]taurine. The subcellular distribution of all the components measured was compatible with the neurotransmitter or putative neuro-transmitter functions of glutamate, GABA, and taurine. The large amount of these three amino acids exceeds that required for such function. The excess of glutamate and GABA may be used as a source of energy. The function of the excess of taurine is still not clear, although circumstantial evidence favors an important role in the development and maturation of the CNS.  相似文献   

15.
Wang Y  Zhan L  Zeng W  Li K  Sun W  Xu ZC  Xu E 《Neurochemical research》2011,36(12):2409-2416
This study aims to determine the expression of Gamma-aminobutyric acid (GABA) following hypoxia in neonatal rats and explore how it may increase susceptibility to epilepsy later in life. A modified model of neonatal hypoxia-induced epileptic susceptibility was simulated by 17 min of hypoxia (5% O2 and 95% N2) in postnatal day (P) 10 rats. Hippocampal glutamate decarboxylase (GAD) and parvalbumin (PV) during the development with or without hypoxia were examined using immunohistochemistry. No detectable neuronal loss was observed in the hippocampus either immediately or 14 days after hypoxia. During the development GAD- and PV-immunoreactivity increased substantially during P 11–13 and reached mature expression in the control rats, and decreased significantly at different time points except for a transient increase during P 11–13 in the hypoxic groups. Our study indicates that downregulation of hippocampal GABA after hypoxia-induced seizures in neonatal rats may contribute to higher epileptic susceptibility in later life.  相似文献   

16.
The uptake and release of glutamate and of GABA, as well as the effect of high potassium concentrations (35 or 80 mM) hereupon, were studied by aid of 14C-labelled amino acids in brain cortex slices from rats of different ages between birth and adulthood. Both the extent of the uptake (i.e. the tissue/medium ratio of 14C at, or close to, equilibrium) and the rate of uptake (i.e. the tissue/ medium ratio of 14C after short (5 min) incubation periods) increased with age. Differences were, however, found between glutamate and GABA, and the extent of the GABA uptake had a distinct maximum during the second postnatal week. At all ages, high concentrations of potassium caused a decrease in the rate of GABA uptake but were without effect on the rate with which glutamate was taken up. The release of the two amino acids occurred with approximately the same half-time (50 min) in slices from animals of at least 14 days of age. Before that time the release of glutamate was somewhat faster, whereas that of GABA was much slower, especially during the first postnatal week (half-time 90 min). The ontogenetic alterations in the effect of excess potassium were complex and varied both between the two potassium concentrations used and between the two amino acids. The results are thus compatible with the existence of different transport systems for the two amino acids, They also suggest that glutamate may exert other functions in addition to its role as a putative transmitter.  相似文献   

17.
In this study, we tested the hypothesis that prostaglandin endoperoxide synthase-1 and -2 (PGHS-1 and PGHS-2) are expressed throughout the latter half of gestation in ovine fetal brain and pituitary. Hypothalamus, pituitary, hippocampus, brainstem, cortex and cerebellum were collected from fetal sheep at 80, 100, 120, 130, 145 days of gestational age (DGA), 1 and 7 days postpartum lambs, and from adult ewes (n = 4–5 per group). mRNA and protein were isolated from each region, and expression of prostaglandin synthase-1 (PGHS-1) and -2 (PGHS-2) were evaluated using real-time RT-PCR and western blot. PGHS-1 and -2 were detected in every brain region at every age tested. Both enzymes were measured in highest abundance in hippocampus and cerebral cortex, and lowest in brainstem and pituitary. PGHS-1 and -2 mRNA’s were upregulated in hypothalamus and pituitary after 100 DGA. The hippocampus exhibited decreases in PGHS-1 and increases in PGHS-2 mRNA after 80 DGA. Brainstem PGHS-1 and -2 and cortex PGHS-2 exhibited robust increases in mRNA postpartum, while cerebellar PGHS-1 and -2 mRNA’s were upregulated at 120 DGA. Tissue concentrations of PGE2 correlated with PGHS-2 mRNA, but not to other variables. We conclude that the regulation of expression of these enzymes is region-specific, suggesting that the activity of these enzymes is likely to be critical for brain development in the late-gestation ovine fetus.  相似文献   

18.
The value of urine osmolality as an index of stress in the ovine fetus   总被引:2,自引:0,他引:2  
In ovine fetuses, during 100-130 days of gestation, urine osmolalities less than 175 mosmol/kg water were associated with plasma immunoreactive adrenocorticotrophin (ACTH) concentrations below 40 pg/ml in 40/41 samples. In 18/29 fetuses with urine osmolalities greater than 175 mosmol/kg water plasma ACTH was significantly elevated. In 38 samples of fetal blood there was a significant correlation between plasma ADH and ACTH concentrations. By least squares regression the equation to the line was [ACTH] = 5.06 + 3.70 [ADH] (r = 0.62, P less than 0.001). In 50 samples from fetuses of gestational ages 100-140 days, with urine osmolalities of 302 +/- 86 mosmol/kg (mean +/- SD) the blood pH, pO2 and pCO2 values were not significantly different from those in 50 samples from fetuses with urine osmolalities of 125 +/- 22 mosmol/kg. It is proposed that the measurement of fetal urine osmolality provides a good index of fetal stress. A fetus with a urine osmolality less than 175 mosmol/kg is almost invariably in the optimum, unstressed condition.  相似文献   

19.
The goitrogen methylthiouracil was administered orally to pregnant ewes of known gestational ages to induce hypothyroidism in both mother and fetus. Developing pituitary thyrotrophic cells were studied using electron microscopy to detect the earliest gestational age at which morphological changes occurred in response to lowered plasma thyroid hormone concentrations. At 50 days of gestation, the pituitaries of fetuses exposed to the goitrogen were indistinguishable from untreated control glands. However, at 58 days and subsequent ages, "thyroidectomy' cells were observed in pituitaries of all hypothyroid fetuses. These findings indicate that fetal sheep pituitary thyrotrophs are sensitive to lowered thyroid hormone concentrations by 58 days of gestation, suggesting that thyroid-thyrotroph interaction exists at this early stage of development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号