首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a collection of autosomal recessive disorders characterized by the accumulation of autofluorescent lipopigments in the neurons and other cell types. Clinically, these disorders are characterized by progressive encephalopathy, loss of vision, and seizures. CLN3, the gene responsible for juvenile NCL, has been mapped to a 15-cM region flanked by the marker loci D16S148 and D16S150 on human chromosome 16. CLN2, the gene causing the late-infantile form of NCL (LNCL), is not yet mapped. We have used highly informative dinucleotide repeat markers mapping between D16S148 and D16S150 to refine the localization of CLN3 and to test for linkage to CLN2. We find significant linkage disequilibrium between CLN3 and the dinucleotide repeat marker loci D16S288 (chi 2(7) = 46.5, P < .005), D16S298 (chi 2(6) = 36.6, P < .005), and D16S299 (chi 2(7) = 73.8, P < .005), and also a novel RFLP marker at the D16S272 locus (chi 2(1) = 5.7, P = .02). These markers all map to 16p12.1. The D16S298/D16S299 haplotype "5/4" is highly overrepresented, accounting for 54% of CLN3 chromosomes as compared with 8% of control chromosomes (chi 2 = 117, df = 1, P < .001). Examination of the haplotypes suggests that the CLN3 locus can be narrowed to the region immediately surrounding these markers in 16p12.1. Analysis of D16S299 in our LNCL pedigrees supports our previous finding that CLN3 and CLN2 are different genetic loci. This study also indicates that dinucleotide repeat markers play a valuable role in disequilibrium studies.  相似文献   

2.
The gene that is involved in juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease--CLN3--has been localized to 16p12, and the mutation shows a strong association with alleles of microsatellite markers D16S298, D16S299, and D16S288. Recently, haplotype analysis of a Batten patient from a consanguineous relationship indicated homozygosity for a D16S298 null allele. PCR analysis with different primers on DNA from the patient and his family suggests the presence of a cytogenetically undetectable deletion, which was confirmed by Southern blot analysis. The microdeletion is embedded in a region containing chromosome 16-specific repeated sequences. However, putative candidates for CLN3, members of the highly homologous sulfotransferase gene family, which are also present in this region in several copies, were not deleted in the patient. If the microdeletion in this patient is responsible for Batten disease, then we conclude that the sulfotransferase genes are probably not involved in JNCL. By use of markers and probes flanking D16S298, the maximum size of the microdeletion was determined to be approximately 29 kb. The microdeletion may affect the CLN3 gene, which is expected to be in close proximity to D16S298.  相似文献   

3.
Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1 in 1500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20 to 30 generations ago (i.e., approximately 500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie approximately 200 - 400 kb (total range 30 - 1360 kb) from the closest marker D13S162.  相似文献   

4.
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance. Genetic linkage studies were undertaken to determine the chromosomal location of the Batten disease mutation (CLN3). Following identification of linkage to the haptoglobin locus, linkage analysis has been carried out in 42 families by using DNA markers for loci on the long arm of human chromosome 16. The maximal lod score between Batten disease and the locus D16S148 calculated for combined sexes is 6.05 at a recombination fraction theta = 0.00. Multilocus analysis using five loci indicated the most likely order to be HP-D16S151-D16S150-CLN3-D16S148-D16S147. The maximal location score for CLN3 was 48 (equivalent to a lod score of 10.4) in that interval within this fixed marker map.  相似文献   

5.
Patterns of polymorphism and linkage disequilibrium for cystic fibrosis   总被引:33,自引:0,他引:33  
Four polymorphic markers that map within 80 kb of an HTF island which is genetically very close to the cystic fibrosis locus have been identified. We have analyzed the linkage disequilibrium between each of these markers and the cystic fibrosis mutation in 89 families from four European countries, Denmark, Finland, Spain, and Great Britain. Strong linkage disequilibrium between three polymorphic sites and cystic fibrosis was observed. The markers on the J3.11 (D7S8) side of the HTF island show stronger disequilibrium than those on the met side. Linkage disequilibrium between markers and disease alters the probability that a person of a given haplotype is a carrier in some populations and helps to identify regions of a sequence that are most likely to contain the cystic fibrosis mutation.  相似文献   

6.
I J?rvel? 《Genomics》1991,10(2):333-337
Two forms of neuronal ceroid lipofuscinosis (CLN) are enriched in the Finnish population: the infantile form (CLN1), which is the most common progressive encephalopathy of small children, and the variant late infantile form (variant CLN2), which is a rare, atypical form of neuronal ceroid lipofuscinosis. We recently established the linkage of the infantile form (CLN1) to the short arm of chromosome 1 close to the anchor marker D1S7. Here we demonstrate a linkage disequilibrium of CLN1 chromosomes using the two closest markers, DIS62 and L-MYC at the short arm of chromosome 1 (P less than 0.0025). The results of linkage analyses in Finnish variant CLN2 families using the markers linked to CLN1 revealed an exclusion; i.e., this form of CLN is caused by a locus different from that of CLN1. This finding was confirmed with the result of the M-test for heterogeneity. The genealogical data collected further support the molecular genetic findings and provide evidence that the mutation causing CLN1 in Finland is very old, whereas the mutation causing the variant CLN2 could be a result of a younger, i.e., more recent founder effect.  相似文献   

7.
Positional cloning efforts of genes mutated in Batten disease and in the Finnish type of variant late infantile neuronal ceroid lipofuscinosis resulted in the identification of two novel genes, CLN3 and CLN5, and corresponding gene products that proved to be residents of lysosomes. Although the clinical phenotype of these NCL subtypes differs in the age of onset, average life span and EEG findings, the major component of material accumulating in patients' lysosomes is subunit c of mitochondrial ATPase in both these diseases. The CLN3 and CLN5 genes show ubiquitous expression patterns and are targeted to lysosomes in vitro, but the observed synaptosomal localization of the CLN3 protein in neurons would suggest some cell specificity in targeting and function of these proteins. So far, 31 different mutations of the CLN3 gene have been described in Batten patients, with one deletion of 1.02 kb accounting for 75% of disease alleles worldwide. Four CLN5 mutations are known, with one premature stop representing the major founder mutation in the isolated Finnish population. Functional studies of the yeast homolog of CLN3 and increased pH in patients' lysosomes would suggest an involvement of this protein in lysosomal pH homeostasis. Knock-out mouse models for CLN3 have been produced and the histopathology bears a close resemblance to human counterparts with characteristic lysosomal accumulations. Both CLN3 and CLN5 mouse models will provide experimental tools to resolve the pathological cascade in these neurodegenerative diseases.  相似文献   

8.
The gene for Batten disease (CLN3) has been mapped to human chromosome 16 by demonstration of linkage to the haptoglobin locus, and its localization has been further refined using a panel of DNA markers. The aim of this work was to refine the genetic and physical mapping of this disease locus. Genetic linkage analysis was carried out in a larger group of families by using markers for five linked loci. Multipoint analysis indicated a most likely location for CLN3 in the interval between D16S67 and D16S148 (Z = 12.5). Physical mapping of linked markers was carried out using somatic cell hybrid analysis and in situ hybridization. A mouse/human hybrid cell panel containing various segments of chromosome 16 has been constructed. The relative order and physical location of breakpoints in the proximal portion of 16p were determined. Physical mapping in this panel of the markers for the loci flanking CLN3 positioned them to the bands 16p12.1----16p12.3. Fluorescent in situ hybridization of metaphase chromosomes by using these markers positioned them to the region 16p11.2-16p12.1. These results localize CLN3 to an interval of about 2 cM in the region 16p12.  相似文献   

9.
A new neonatal syndrome characterized by intrauterine growth retardation, lactic acidosis, aminoaciduria, liver hemosiderosis, and early death was recently described. The pathogenesis of this disease is unknown. The mode of inheritance is autosomal recessive, and so far only 17 cases have been reported in 12 Finnish families. Here we report the assignment of the locus for this new disease to a restricted region on chromosome 2q33-37. We mapped the disease locus in a family material insufficient for traditional linkage analysis by using linkage disequilibrium, a possibility available in genetic isolates such as Finland. The primary screening of the genome was performed with samples from nine affected individuals in five families. In the next step, conventional linkage analysis was performed in eight families, with a total of 12 affected infants, and finally the locus assignment was proved by demonstrating linkage disequilibrium to the regional markers in 20 disease chromosomes. Linkage analysis restricted the disease locus to a 3-cM region between markers D2S164 and D2S2359, and linkage disequilibrium with the ancestral haplotype restricted the disease locus further to the immediate vicinity of marker D2S2250.  相似文献   

10.
Congenital nephrotic syndrome of the Finnish type (CNF) is an autosomal recessive disease that is characterized by massive proteinuria and nephrotic syndrome at birth. CNF represents a unique, apparently specific dysfunction of the renal basement membranes, and the estimated incidence of CNF in the isolated population of Finland is 1 in 8,000 newborns. The basic defect is unknown, and no specific biochemical defect or chromosomal aberrations have been described. Here we report the assignment of the CNF locus to 19q12-q13.1 on the basis of linkage analyses in 17 Finnish families. Multipoint analyses and observed recombination events place the CNF locus between multiallelic markers D19S416 and D19S224, and the significant linkage disequilibrium observed suggests that the CNF gene lies in the immediate vicinity of the markers D19S224 and D19S220.  相似文献   

11.
Summary Huntington disease (HD) is found at exceptionally low frequency in the Finnish population. In this population, linkage disequilibrium was earlier established with markers from the D4S10 and D4S43 loci. We now report a continuation to the restriction fragment length polymorphism haplotype analysis, in combination with a genealogical study of all the Finnish HD families. When the HD pedigrees were systematically traced to the 18th century, only one consanguinity was found, and a high percentage (28%) of the families had foreign ancestors. The majority of the Finnish ancestors were localized to border regions or trade centers of the country following the old postal routes. The observed high risk haplotypes formed with markers from the D4S10 and D4S43 loci were evenly distributed among the HD families in different geographical locations. Consequently, the HD gene(s) has most probably arrived in Finland on several occasions via foreign immigrants during the last few centuries.  相似文献   

12.
The neuronal ceroid lipofuscinoses (CLNs) are one of the most common progressive encephalopathies of childhood in Western countries. They are divided into three main types: infantile, late infantile, and juvenile. The inheritance of all forms is autosomal recessive, and the biochemical background is totally unknown. The infantile type (CLN1) demonstrates the earliest onset of symptoms and the most severe clinical course. CLN1 is enriched in the Finnish population with incidence of 1:20,000, and only about 50 cases have been reported from other parts of the world. We have collected 15 Finnish CLN1 families with one or two diseased children for a linkage analysis with polymorphic probes randomly localized on human chromosomes. After studying 42 polymorphic protein and DNA markers, we found definitive proof of linkage with three different probes on the short arm of chromosome 1, with maximum lod scores of 3.38 at theta = 0.00 (0.00-0.08) for D1S57 (pYNZ2), 3.56 at theta = 0.00 (0.00-0.09) for D1S7 (lambda MS1), and 3.56 at theta = 0.00 (0.00-0.11) for D1S79 (pCMM8). With the assignment of the CLN1 gene, our study demonstrates the power of multiallelic VNTR probes in the search for linkage of a rare recessive disorder using limited family material.  相似文献   

13.
Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators.  相似文献   

14.
Batten disease, the juvenile form of neuronal ceroid lipofuscinosis, is a prevalent neuron degenerative disorder of childhood. A 1.02-kb genomic deletion in the Batten disease gene CLN3 has been determined to be a common mutation. We developed a PCR method to screen for this deletion and tested 43 Batten disease probands. We found 36% (31/86) of Batten disease chromosomes did not carry the 1.02-kb deletion. Of the three heterozygotes for the 1.02-kb deletion, a novel G-to-A missense mutation at nucleotide 1020 of the CLN3 cDNA sequence was found on two of the non-1.02-kb deletion chromosomes. The missense mutation resulted in a substitution of glutamic acid (E) by lysine (K) at position 295 (E295 K). The E295 K mutation causes a change in predicted local protein conformation. This glutamic acid is a highly conserved acidic amino acid, being present in human, mouse, dog and yeast, which suggests it may play an important role in the function of the Batten disease protein. Received: 12 May 1997 / Accepted: 21 August 1997  相似文献   

15.
We recently assigned the gene for an autosomal recessive skeletal dysplasia, cartilage-hair hypoplasia (CHH), to 9p21-p13 in Finnish and Amish families. An association was observed between CHH and alleles at D9S163 in both family series, suggesting that these loci are in linkage disequilibrium and close to each other. Here we extended these studies by exploiting the linkage-disequilibrium information that can be obtained from families with a single affected child, and we studied 66 Finnish CHH families with seven microsatellite markers. The analysis based on the Luria and Delbrück (1943) method and adapted to the study of human founder populations suggests that the distance between CHH and D9S163 is approximately 0.3 cM. An eight-point linkage analysis modified to take advantage of all possible information in 15 Finnish and 17 Amish families was capable of narrowing the likely location of CHH to within an interval of 1.7 cM on a male map. The peak lod score of 54.92 was attained 0.03 and 0.1 cM proximal to D9S163 on the male and female maps, respectively. These results confirm the power of genetic resolution, that lies in the study of linkage disequilibrium in well-defined founder populations with one major ancestral disease mutation.  相似文献   

16.
Significant linkage disequilibrium has been found between the Huntington disease (HD) gene and DNA markers located around D4S95 and D4S98. The linkage-disequilibrium studies favor the proximal location of the HD gene, in contrast to the conflicting results of recombination analyses. We have analyzed 45 Dutch HD families with 19 DNA markers and have calculated the strength of linkage disequilibrium. Highly significant linkage disequilibrium has been detected with D4S95, consistent with the studies in other populations. In contrast with most other studies, however, the area of linkage disequilibrium extends from D4S10 proximally to D4S95, covering 1,100 kb. These results confirm that the HD gene most likely maps near D4S95.  相似文献   

17.
Carbohydrate-deficient glycoprotein syndrome type I (CDG I) is characterized clinically by severe nervous system involvement and biochemically by defects in the carbohydrate residues in a number of serum glycoproteins. The CDG1 gene was recently localized by us to a 13-cM interval in chromosome region 16p13. In this study 44 CDG I families from nine countries were analyzed with available markers in a region ranging from marker D16S495 to D16S497, and haplotype and linkage disequilibrium analyses were performed. One specific haplotype was found to be markedly overrepresented in CDG I patients from a geographically distinct region in Scandinavia, strongly indicating that CDG I families in this region share the same ancestral CDG1 mutation. Furthermore, analysis of the extent of the common haplotype in these families indicates that the CDG1 gene is located in the region defined by markers D16S513–AFMa284wd5–D16S768–D16S406–D16S502. The critical CDG1 region, in strong linkage disequilibrium with markers AFMa284wd5, D16S768, and D16S406, thus constitutes less than 1 Mb of DNA and less than 1 cM in the very distal part of the CDG1 region defined by us previously.  相似文献   

18.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. Inheritance is autosomal recessive. Three main childhood subtypes are recognized: infantile (Haltia-Santavuori disease; MIM 256743), late infantile (Jansky-Bielschowsky disease; MIM 204500), and juvenile (Spielmeyer-Sjögren-Vogt, or Batten, disease; MIM 204200). The gene loci for the juvenile (CLN3) and infantile (CLN1) types have been mapped to human chromosomes 16p and 1p, respectively, by linkage analysis. Linkage analysis of 25 families segregating for late-infantile NCL has excluded these regions as the site of this disease locus (CLN2). The three childhood subtypes of NCL therefore arise from mutations at distinct loci.  相似文献   

19.
A cosmid library of recombinants containing nonmethylated CpG sites for rare-cutter restriction enzymes was used previously to isolate the gene IRP and four polymorphic DNA markers (pPT-3, pXV-2c, pCS.7, and pKM.19) which are close to and in linkage disequilibrium with the cystic fibrosis (CF) mutation. We have analyzed several new clones from the same library and have isolated a further cosmid, cNX.6d, which maps approximately 160 kb from CS.7, in the J3.11 direction. A DNA fragment (pMP6d-9) (D7S399) derived from cosmid cNX.6d detects a frequent polymorphism with MspI. Strong linkage disequilibrium between CF and MP6d-9 is found in European populations. Recombinations in two families suggest that CF is between the MspI polymorphic site recognized by pMP6d-9 and the polymorphism recognized by pJ3.11. The new marker is the closest, to date, to CF and will be useful for prenatal diagnosis and carrier testing.  相似文献   

20.
A locus for Usher syndrome type III (USH3;MIM No. 276902) was recently assigned to a 5-cM region on chromosome 3q. We constructed a yeast artificial chromosome contig that allowed us to position novel polymorphisms in the region. These were typed in a total of 32 pedigrees from a geographically isolated Finnish founder population in which a putative single ancestralUSH3mutation segregates. A multipoint linkage analysis assignedUSH3to a 4-cM region betweenD3S1555and a novel markerD3S3625.By analysis of linkage disequilibrium and historical recombinations in 77USH3chromosomes, the location of the Finnish USH3 mutation could be narrowed to an approximately 1-cM interval between the markersD3S1299andD3S3625.A gene for profilin-2 (PFN2) was mapped in the vicinity and excluded as a candidate for USH3 by sequencing. The putative mouse homolog ofPFN2was mapped to mouse chromosome 3, thus suggesting a localization for the mouse homolog ofUSH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号